基于稀疏度自適應(yīng)壓縮感知的電容層析成像圖像重建算法
doi: 10.11999/JEIT170794
-
1.
(遼寧大學(xué)物理學(xué)院 沈陽 110036) ②(沈陽工業(yè)大學(xué)信息科學(xué)與工程學(xué)院 沈陽 110870)
國家自然科學(xué)基金(61071141),遼寧省自然科學(xué)基金(20102082),遼寧省教育廳科研項(xiàng)目(LFW201708)
Image Reconstruction Algorithm for Electrical Capacitance Tomography Based on Sparsity Adaptive Compressed Sensing
-
1.
(College of Physics, Liaoning University, Shenyang 110036, China)
-
2.
(School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)
The National Natural Science Foundation of China (61071141), The Scientific Research Foundation of Liaoning Province (20102082), The Scientific Research Project of Liaoning Provincial Education Department (LFW201708)
-
摘要: 為提高電容層析成像(ECT)系統(tǒng)重建圖像的質(zhì)量,該文提出一種基于改進(jìn)稀疏度自適應(yīng)的壓縮感知電容層析成像算法。利用壓縮感知與電容層析成像算法的契合點(diǎn),以隨機(jī)改造后的電容層析成像靈敏度矩陣為觀測矩陣,離散余弦基為稀疏基,測量電容值為觀測值,建立模型。利用線性反投影算法(LBP算法)所得圖像預(yù)估原始圖像稀疏度,以預(yù)估稀疏度值作為索引原子初始值進(jìn)行稀疏度自適應(yīng)迭代。改進(jìn)后的稀疏度自適應(yīng)匹配追蹤重構(gòu)算法實(shí)現(xiàn)ECT圖像重建,解決了稀疏度預(yù)估不準(zhǔn)確導(dǎo)致重建圖像精度差的問題。仿真實(shí)驗(yàn)結(jié)果表明,該算法可以有效重建ECT圖像,其成像質(zhì)量優(yōu)于LBP算法、Landweber算法、Tikhonov算法等傳統(tǒng)算法,是研究電容層析成像圖像重建的一種新的方法和手段。
-
關(guān)鍵詞:
- 圖像重建 /
- 電容層析成像 /
- 稀疏度自適應(yīng) /
- 壓縮感知
Abstract: In order to improve quality of the reconstructed images of the Electrical Capacitance Tomography (ECT) system, an improved sparsity adaptive matching pursuit compressed sensing algorithm is proposed. Based on the coherence point of Compressed Sensing (CS) theory and ECT, the CS-ECT model is established. In the model, the sensitivity matrix of ECT is designed in a random order to be the observation matrix, the discrete cosine base is used as the sparse base, the capacitance value is measured as the observed value. By using the Linear Back Projection (LBP) algorithm, the sparsity of the estimated images is confirmed. The sparsity can be served as the initial value of the atomic index for sparsity adaptive iteration. The lack of image reconstruction accuracy caused by the inaccurate estimate of sparsity can be solved by the improved sparsity adaptive matching pursuit algorithm. Simulation results indicate that reconstructed images with higher accuracy can be obtained using the improved sparsity adaptive matching pursuit compressed sensing algorithm than the LBP algorithm, Landweber algorithm and Tikhonov algorithm. A new method of ECT reconstruction is provided. -
WANG Huaxiang. Electrical Tomography[M]. Beijing: Science Press, 2013: 4-6. 王化祥. 電學(xué)層析成像[M]. 北京: 科學(xué)出版社, 2013: 4-6. 吳新杰, 何在剛, 李惠強(qiáng), 等. 利用多準(zhǔn)則Hopfield網(wǎng)絡(luò)對ECT進(jìn)行圖像重建[J]. 電機(jī)與控制學(xué)報(bào), 2016, 20(8): 98-104. doi: 10.15938/j.emc.2016.08.013. WU Xinjie, HE Zaigang, LI Huiqiang, et al. Image reconstruction by using multi-criteria of hopfield network for ECT[J]. Electric Machines and Control, 2016, 20(8): 98-104. doi: 10.15938/j.emc.2016.08.013. 張立峰, 劉昭麟, 田沛. 基于壓縮感知的電容層析成像圖像重建算法[J]. 電子學(xué)報(bào), 2017, 45(2): 353-358. doi: 10.3969/ j.issn.0372-2112.2017.02.013. ZHANG Lifeng, LIU Zhaolin, and TIAN Pei. Image reconstruction algorithm for electrical capacitance tomography based on compressed sensing[J]. Acta Electronica Sinica, 2017, 45(2): 353-358. doi: 10.3969/j.issn. 0372-2112.2017.02.013. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571. doi: 10.1016/j.sigpro.2005.05.029. METZLER C A, MALEKI A, and BARANIUK R G. From denoising to compressed sensing[J]. IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144. doi: 10.1109/ TIT.2016.2556683. BIGOT J, BOYER C, and WEISS P. An analysis of block sampling strategies in compressed sensing[J]. IEEE Transactions on Information Theory, 2016, 62(4): 2125-2139. doi: 10.1109/TIT.2016.2524628. ROMBERG J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20. doi: 10.1109/ MSP.2007.914729. 嚴(yán)韜, 陳建文, 鮑拯. 一種基于壓縮感知的天波超視距雷達(dá)短時(shí)海雜波抑制方法[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 945-952. doi: 10.11999/JEIT160576. YAN Tao, CHEN Jianwen, and BAO Zheng. Sea clutter suppression method for over-the-horizon radar with short coherent integration time based on compressed sensing [J]. Journal of Electronics Information Technology, 2017, 39(4): 945-952. doi: 10.11999/JEIT160576. 程銀波, 司菁菁, 候肖蘭. 適用于無線傳感器網(wǎng)絡(luò)的層次化分布式壓縮感知[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 539-545. doi: 10.11999/JEIT160439. CHENG Yinbo, SI Jingjing, and HOU Xiaolan. Hierarchical distributed compressed sensing for wireless sensor network [J]. Journal of Electronics Information Technology, 2017, 39(3): 539-545. doi: 10.11999/JEIT160439. FRACASTORO G, FOSSON S M, and MAGLI E. Steerable discrete cosine transform[J]. IEEE Transactions on Image Processing, 2017, 26(1): 303-314. doi: 10.1109/TIP.2016. 2623489. RAMAKRISHNAN A G, ABHIRAM B, and MAHADEVA P S R. Voice source characterization using pitch synchronous discrete cosine transform for speaker identification[J]. The Journal of the Acoustical Society of America, 2015, 137(6): EL469-EL475. doi: 10.1121/1.4921679. MESSAOUDI A and SRAIRI K. Colour image compression algorithm based on the DCT transform using difference lookup table[J]. Electronics Letters, 2016, 52(20): 1685-1686. doi: 10.1049/el.2016.2115. CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083. CANDES E J, ROMBERG J, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. doi: 10.1002/cpa.20124. CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979. NATARAJAN B K. Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing, 1995, 24(2): 227-234. doi: 10.1137/S0097539792240406. CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159. doi: 10.1137/S003614450037906X. TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108. NEEDELL D and VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334. doi: 10.1007/s10208-008- 9031-3. THONG T D, LU Gan, NAM Nguyen, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 2008 42nd Asilomar Conference on Signals Systems and Computers, Pacific Grove, CA, USA, 2008, 10: 581-587. 吳新杰, 黃國興, 王靜文. 壓縮感知在電容層析成像流型辨識(shí)中的應(yīng)用[J]. 光學(xué)精密工程, 2013, 21(4): 1062-1068. doi: 10.3788/OPE.20132104.1062. WU Xinjie, HUANG Guoxing, and WANG Jingwen. Application of compressed sensing to flow pattern identification of ECT[J]. Optics and Precision Engineering, 2013, 21(4): 1062-1068. doi: 10.3788/OPE.20132104.1062. -
計(jì)量
- 文章訪問數(shù): 1544
- HTML全文瀏覽量: 232
- PDF下載量: 226
- 被引次數(shù): 0