基于魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法
doi: 10.11999/JEIT170789
國(guó)家自然科學(xué)基金(61401137, 61404043),安徽省科技重大專(zhuān)項(xiàng)(16030901007),中央高?;A(chǔ)研究基金(J2014HGXJ0083)
Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis
The National Natural Science Foundation of China (61401137, 61404043), The Key Science and Technology Project of Anhui Province (16030901007), The Fundamental Research Funds for the Central Universities (J2014HGXJ0083)
-
摘要: 針對(duì)魯棒主成分分析(Robust Principal Component Analysis, RPCA)算法中將動(dòng)態(tài)背景誤檢為運(yùn)動(dòng)目標(biāo)的問(wèn)題,該文提出一種運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法。在RPCA算法初步檢測(cè)出運(yùn)動(dòng)目標(biāo)后,利用動(dòng)態(tài)背景在時(shí)間域上滿足高斯分布的特性,以及動(dòng)態(tài)背景和運(yùn)動(dòng)目標(biāo)在整個(gè)視頻流上檢出點(diǎn)均值和方差的差異特性,進(jìn)一步將動(dòng)態(tài)背景和運(yùn)動(dòng)目標(biāo)分離開(kāi)來(lái)。實(shí)驗(yàn)結(jié)果表明,所提算法能夠有效地處理動(dòng)態(tài)背景的問(wèn)題,并在一定程度上完整檢測(cè)出運(yùn)動(dòng)目標(biāo)。
-
關(guān)鍵詞:
- 運(yùn)動(dòng)目標(biāo)檢測(cè) /
- 魯棒主成分分析 /
- 動(dòng)態(tài)背景 /
- 時(shí)間域
Abstract: Since dynamic background may be erroneously detected as a moving object in the Robust Principal Component Analysis (RPCA) algorithm, a RPCA-based moving object detection optimization algorithm is proposed to improve it. After detected by the RPCA algorithm, the moving object will be separated from dynamic background according to the Gaussian distribution of dynamic background in the time domain and the difference of mean value and variance between dynamic background and moving object in the whole video stream. The results show that the algorithm can deal with dynamic background effectively and detect the moving objects well. -
KULCHANDANI J S and DANGARWALA K J. Moving object detection: review of recent research trends[C]. International Conference on Pervasive Computing, Pune, 2015: 1-5. doi: 10.1109/PERVASIVE.2015.7087138. LIANG R, YAN L, GAO P, et al. Aviation video moving- target detection with inter-frame difference[C]. International Congress on Image and Signal Processing, Yantai, 2010: 1494-1497. doi: 10.1109/CISP.2010.5646303. BARRON J L, FLEET D J, and BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43-77. doi: 10.1007 /BF01420984. DENMAN S, FOOKES C, and SRIDHARAN S. Improved simultaneous computation of motion detection and optical flow for object tracking[C]. Digital Image Computing: Techniques and Applications, Washington, D.C., USA, 2009: 175-182. doi: 10.1109/DICTA.2009.35. 周建英, 吳小培, 張超. 基于滑動(dòng)窗的混合高斯模型運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449. ZHOU Jianying, WU Xiaopei, and ZHANG Chao. A moving object detection method based on sliding window gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449. STAUFFER Chris and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999: 2246-2252. doi: 10.1109/CVPR.1999.784637. MITTAL A and PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]. Computer Vision and Pattern Recognition, Washington, D.C., USA, 2004: 302-309. doi: 10.1109/CVPR.2004.164. JAVED S, OH S H, SOBRAL A, et al. Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 930-938. doi: 10.1109/ ICCVW.2015.123. CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11:1-11:37. doi: 10.1145/1970392.1970395. ZHOU X, YANG C, and YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 597-610. doi: 10.1109/TPAMI.2012. 132. CAO X, LIANG Y, and GUO X. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014-1027. doi: 10.1109/TCYB.2015.2419737. GAO Z, CHEONG L F, and WANG Y X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 36(10): 1975-1987. doi: 10.1109/TPAMI.2014.2314663. 郭小路, 陶海紅, 楊東. 聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462. GUO Xiaolu, TAO Haihong, and YANG Dong. Ground moving target detection based on robust principal component analysis and shape constraint[J]. Journal of Electronics Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462. 蔡念, 周楊, 劉根, 等. 魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)綜述[J]. 中國(guó)圖象圖形學(xué)報(bào), 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001. CAI Nian, ZHOU Yang, LIU Gen, et al. Survey of robust principal component analysis methods for moving object detection[J]. Journal of Image and Graphics, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001. ELTANTAWY A and SHEHATA M S. Moving object detection from moving platforms using Lagrange multiplier [C]. IEEE International Conference on Image Processing, Quebec City, Q.C., Canada, 2015: 2586-2590. doi: 10.1109/ ICIP.2015.7351270. SOBRAL A, BOUWMANS T, and ZAHZAH E. Double- constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1-6. doi: 10.1109/AVSS.2015.7301753. LIANG D, KANEKO S, HASHIMOTO M, et al. Co- occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes[J]. Pattern Recognition, 2015, 48(4): 1374-1390. doi: 10.1016/j.patcog. 2014.10.020. GRACIELA Ramrez-Alonso and MARIOI Chacn-Murgua. Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos[J]. Neurocomputing, 2016, 175: 990-1000. doi: 10.1016/j.neucom. 2015.04.118. -
計(jì)量
- 文章訪問(wèn)數(shù): 1640
- HTML全文瀏覽量: 196
- PDF下載量: 268
- 被引次數(shù): 0