一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法

楊依忠 汪鵬飛 胡雄樓 伍能舉

楊依忠, 汪鵬飛, 胡雄樓, 伍能舉. 基于魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
引用本文: 楊依忠, 汪鵬飛, 胡雄樓, 伍能舉. 基于魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
YANG Yizhong, WANG Pengfei, HU Xionglou, WU Nengju. Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
Citation: YANG Yizhong, WANG Pengfei, HU Xionglou, WU Nengju. Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789

基于魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法

doi: 10.11999/JEIT170789
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61401137, 61404043),安徽省科技重大專(zhuān)項(xiàng)(16030901007),中央高?;A(chǔ)研究基金(J2014HGXJ0083)

Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis

Funds: 

The National Natural Science Foundation of China (61401137, 61404043), The Key Science and Technology Project of Anhui Province (16030901007), The Fundamental Research Funds for the Central Universities (J2014HGXJ0083)

  • 摘要: 針對(duì)魯棒主成分分析(Robust Principal Component Analysis, RPCA)算法中將動(dòng)態(tài)背景誤檢為運(yùn)動(dòng)目標(biāo)的問(wèn)題,該文提出一種運(yùn)動(dòng)目標(biāo)檢測(cè)優(yōu)化算法。在RPCA算法初步檢測(cè)出運(yùn)動(dòng)目標(biāo)后,利用動(dòng)態(tài)背景在時(shí)間域上滿足高斯分布的特性,以及動(dòng)態(tài)背景和運(yùn)動(dòng)目標(biāo)在整個(gè)視頻流上檢出點(diǎn)均值和方差的差異特性,進(jìn)一步將動(dòng)態(tài)背景和運(yùn)動(dòng)目標(biāo)分離開(kāi)來(lái)。實(shí)驗(yàn)結(jié)果表明,所提算法能夠有效地處理動(dòng)態(tài)背景的問(wèn)題,并在一定程度上完整檢測(cè)出運(yùn)動(dòng)目標(biāo)。
  • KULCHANDANI J S and DANGARWALA K J. Moving object detection: review of recent research trends[C]. International Conference on Pervasive Computing, Pune, 2015: 1-5. doi: 10.1109/PERVASIVE.2015.7087138.
    LIANG R, YAN L, GAO P, et al. Aviation video moving- target detection with inter-frame difference[C]. International Congress on Image and Signal Processing, Yantai, 2010: 1494-1497. doi: 10.1109/CISP.2010.5646303.
    BARRON J L, FLEET D J, and BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43-77. doi: 10.1007 /BF01420984.
    DENMAN S, FOOKES C, and SRIDHARAN S. Improved simultaneous computation of motion detection and optical flow for object tracking[C]. Digital Image Computing: Techniques and Applications, Washington, D.C., USA, 2009: 175-182. doi: 10.1109/DICTA.2009.35.
    周建英, 吳小培, 張超. 基于滑動(dòng)窗的混合高斯模型運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
    ZHOU Jianying, WU Xiaopei, and ZHANG Chao. A moving object detection method based on sliding window gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
    STAUFFER Chris and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999: 2246-2252. doi: 10.1109/CVPR.1999.784637.
    MITTAL A and PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]. Computer Vision and Pattern Recognition, Washington, D.C., USA, 2004: 302-309. doi: 10.1109/CVPR.2004.164.
    JAVED S, OH S H, SOBRAL A, et al. Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 930-938. doi: 10.1109/ ICCVW.2015.123.
    CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11:1-11:37. doi: 10.1145/1970392.1970395.
    ZHOU X, YANG C, and YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 597-610. doi: 10.1109/TPAMI.2012. 132.
    CAO X, LIANG Y, and GUO X. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014-1027. doi: 10.1109/TCYB.2015.2419737.
    GAO Z, CHEONG L F, and WANG Y X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 36(10): 1975-1987. doi: 10.1109/TPAMI.2014.2314663.
    郭小路, 陶海紅, 楊東. 聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
    GUO Xiaolu, TAO Haihong, and YANG Dong. Ground moving target detection based on robust principal component analysis and shape constraint[J]. Journal of Electronics Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
    蔡念, 周楊, 劉根, 等. 魯棒主成分分析的運(yùn)動(dòng)目標(biāo)檢測(cè)綜述[J]. 中國(guó)圖象圖形學(xué)報(bào), 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
    CAI Nian, ZHOU Yang, LIU Gen, et al. Survey of robust principal component analysis methods for moving object detection[J]. Journal of Image and Graphics, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
    ELTANTAWY A and SHEHATA M S. Moving object detection from moving platforms using Lagrange multiplier [C]. IEEE International Conference on Image Processing, Quebec City, Q.C., Canada, 2015: 2586-2590. doi: 10.1109/ ICIP.2015.7351270.
    SOBRAL A, BOUWMANS T, and ZAHZAH E. Double- constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1-6. doi: 10.1109/AVSS.2015.7301753.
    LIANG D, KANEKO S, HASHIMOTO M, et al. Co- occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes[J]. Pattern Recognition, 2015, 48(4): 1374-1390. doi: 10.1016/j.patcog. 2014.10.020.
    GRACIELA Ramrez-Alonso and MARIOI Chacn-Murgua. Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos[J]. Neurocomputing, 2016, 175: 990-1000. doi: 10.1016/j.neucom. 2015.04.118.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1640
  • HTML全文瀏覽量:  196
  • PDF下載量:  268
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-08-04
  • 修回日期:  2018-01-10
  • 刊出日期:  2018-06-19

目錄

    /

    返回文章
    返回