單載波頻域均衡系統(tǒng)中基于信道頻域響應(yīng)的密鑰生成機(jī)制研究
doi: 10.11999/JEIT170772
國家自然科學(xué)基金(61671252, 61772287),江蘇省高校自然科學(xué)研究重大項(xiàng)目(14KJA510003),江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(CXZZ11_0394)
Study on Secret Key Generation Based on Frequency Domain Response of Channel in Single Carrier Frequency Domain Equalization Systems
The National Natural Science Foundation of China (61671252, 61772287), The Key University Science Research Project of Jiangsu Province (14KJA510003), The Postgraduate Research Practice Innovation Program of Jiangsu Province (CXZZ11_0394)
-
摘要: 單載波頻域均衡(SC-FDE)系統(tǒng)中,信道的頻域響應(yīng)可以作為隨機(jī)源來生成密鑰。為了提高密鑰容量,該文提出一種利用多徑瑞利信道的頻域響應(yīng)來生成密鑰的機(jī)制(CFR-Key)。首先研究了CFR-Key機(jī)制的原理和密鑰生成速率,通過互信息理論推導(dǎo)出了CFR-Key的密鑰容量;進(jìn)而研究了CFR-Key機(jī)制中算法的量化等級(jí)的影響因素,推導(dǎo)驗(yàn)證了量化等級(jí)的選擇只與信噪比有關(guān),當(dāng)信噪比確定的情況下通過選擇最優(yōu)的量化等級(jí)可以得到最大的密鑰生成速率;與基于信道沖激響應(yīng)生成密鑰機(jī)制(CIR-Key)對(duì)比,證實(shí)了CFR-Key機(jī)制可大幅提高密鑰容量。
-
關(guān)鍵詞:
- 密鑰生成 /
- 信道頻域響應(yīng) /
- 單載波頻域均衡系統(tǒng)
Abstract: A secret key generation scheme is proposed in a Single Carrier Frequency Domain Equalization system (SC-FDE). The scheme uses the Channel Frequency Response (CFR) to generate the secret keys, which is termed as CFR-Key. The principle of the CFR-Key scheme is introduced and formulate the secret key capacity is derived based on mutual information theory. The Signal-Noise Ratio (SNR) is proved that is the unique factor and affects the quantization levels. The optimum quantization levels is designed to achieve the best key generation rate when SNR is given. Simulation results show that comparing with the secret key generation scheme based on the Channel Impulse Response (CIR-Key), the proposed scheme can significantly improve the secret key capacity. -
ZHANG J, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: a review[J]. IEEE Access, 2016, 4(3): 614-626. doi: 10.1109/ACCESS.2016.2521718. MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733-742. doi: 10.1109/ 18.256484. AHLSWEDE R and CSISEAR I. Common randomness in information theory and cryptography. I: Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121-1132. doi: 10.1109/18.243431. PREMNATH S N, JANA S, CROFT J, et al. Secret key extraction from wireless signal strength in real environments [J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 917-930. doi: 10.1109/TMC.2012.63. WILSON R, TSE D, and SCHOLTZ R A. Channel identification: Secret sharing using reciprocity in ultrawideband channels[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 364-375. doi: 10.1109/TIFS.2007.902666. WANG Q, SU H, REN K, et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks[C]. IEEE INFOCOM, Shanghai, China, 2011: 1422-1430. doi: 10.1109/INFCOM.2011.5934929. HAROUN M F and GULLIVER T A. Secret key generation using chaotic signals over frequency selective fading channels[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(8): 1764-1775. doi: 10.1109/TIFS.2015. 2428211. SATEED A and PERRIG A. Secure wireless communications: secret keys through multipath[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008: 3013-3016. doi: 10.1109/ICASSP. 2008.4518284. YE C, REZNIK A, and SHAH Y. Extracting secrecy from jointly Gaussian random variables[C]. IEEE International Symposium on Information Theory, Seattle, WA, USA, 2006: 2593-2597. doi: 10.1109/ISIT.2006.262101. YE C, REZNIK A, STERNBERG G, et al. On the secrecy capabilities of ITU channels[C]. IEEE 66th Vehicular Technology Conference, Baltimore, MD, USA, 2007: 2030-2034. doi: 10.1109/VETECF.2007.426. LIU H, WANG Y, YANG J, et al. Fast and practical secret key extraction by exploiting channel response[C]. IEEE INFOCOM, Turin, Italy, 2013: 3048-3056. doi: 10.1109/ INFCOM.2013.6567117. 吳釗, 張彧, 姜龍, 等. 基于寬帶突發(fā)單載波頻域均衡傳輸?shù)臅r(shí)域精細(xì)信道估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1166-1172. doi: 10.11999/JEIT150682. WU Zhao, ZHANG Yu, JIANG Long, et al. Time-domain fine channel estimation based on broadband burst single-carrier frequency domain equalization transmission[J]. Journal of Electronics Information Technology, 2016, 38(5): 1166-1172. doi: 10.11999/ JEIT150682. 喬良, 辛吉榮, 鄭輝. 單載波通信系統(tǒng)的迭代頻域合成均衡算法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1950-1956. doi: 10.11999 /JEIT141507. QIAO Liang, XIN Jirong, and ZHENG Hui. Iterative frequency domain combining equalization algorithm for single carrier systems[J]. Journal of Electronics Information Technology, 2015, 37(8): 1950-1956. doi: 10.11999/JEIT 141507. ASIM M, GHOGHO M, and MCLERNON D. Mitigation of phase noise in single carrier frequency domain equalization systems[C]. IEEE Wireless Communications and Networking Conference, Shanghai, China, 2012: 920-924. doi: 10.1109/ WCNC.2012.6214505. 李曉峰. 隨機(jī)信號(hào)分析[M]. 北京: 電子工業(yè)出版社, 2011: 54-60. LI Xiaofeng. Stochastic Signal Analysis[M]. Beijing: Electronic Industry Press, 2011: 54-60. LI L and YAO W. A novel timing synchronization for CO- OFDM systems using CAZAC sequences[J]. Optoelectronics Letters, 2017, 2(3): 225-228. doi: 10.1007/s11801-017-7017-6. -
計(jì)量
- 文章訪問數(shù): 1393
- HTML全文瀏覽量: 181
- PDF下載量: 222
- 被引次數(shù): 0