基于相關(guān)性測(cè)序的TD-LTE分布式系統(tǒng)室內(nèi)定位算法
doi: 10.11999/JEIT170655
國家自然科學(xué)基金(61301126, 61471077),長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1299),重慶市科委重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi),重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(重點(diǎn))(cstc2015jcyjBX0065),重慶市高校優(yōu)秀成果轉(zhuǎn)化資助項(xiàng)目(KJZH17117),重慶郵電大學(xué)青年科學(xué)研究項(xiàng)目(A2013-31)
TD-LTE Distributed Antenna System Based Indoor Localization Algorithm with Correlation Sequence
The National Natural Science Foundation of China (61301126, 61471077), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of CSTC Key Laboratory, The Fundamental and Frontier Research Project of Chongqing (Key Project) (cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Young Science Research Program of Chongging University of Posts and Telecommunications (A2013-31)
-
摘要: 在分時(shí)長期演進(jìn)(TD-LTE)室內(nèi)分布式網(wǎng)絡(luò)中,不同位置上的信號(hào)差異性不明顯,僅利用標(biāo)定參考點(diǎn)不能實(shí)現(xiàn)準(zhǔn)確位置估計(jì)。該文針對(duì)TD-LTE室內(nèi)分布式網(wǎng)絡(luò)下不同位置處的信號(hào)相似性問題,提出基于相關(guān)性測(cè)序的定位算法。首先,利用相鄰位置的信號(hào)信息構(gòu)建運(yùn)動(dòng)序列數(shù)據(jù)庫。其次,通過相關(guān)性測(cè)序算法,得到在線接收信號(hào)參考強(qiáng)度(RSRP)序列與運(yùn)動(dòng)序列間的匹配度,確定備選定位序列集。然后,計(jì)算備選定位序列與在線RSRP序列間的相關(guān)系數(shù)及平均歐氏距離。最后,根據(jù)匹配度、相關(guān)系數(shù)及平均歐氏距離,選取最優(yōu)備選定位序列,實(shí)現(xiàn)對(duì)目標(biāo)的位置估計(jì)。實(shí)驗(yàn)結(jié)果表明,該文所提定位算法有效提高了室內(nèi)分布式天線系統(tǒng)下的定位精度。
-
關(guān)鍵詞:
- 室內(nèi)定位 /
- 分時(shí)長期演進(jìn) /
- 分布式網(wǎng)絡(luò) /
- 相關(guān)性測(cè)序 /
- 運(yùn)動(dòng)序列數(shù)據(jù)庫
Abstract: In the Time Division Long Term Evolution (TD-LTE) indoor distributed network, the signal differences among different positions are insignificant, thus accurate localization can not be achieved by reference point calibration. To solve this compelling problem, this paper proposes a correlation sequencing based localization algorithm. Firstly, the signal information among adjacent positions is utilized to construct Reference Signal Receiving Power (RSRP) motion sequence database. Next, correlation sequencing algorithm is conducted to obtain relation between real-time RSRP sequence and the ones in constructed database, which results in a set of candidate sequence. After that, the correlation coefficient and mean Euclidean distance between candidate sequences and the online one are calculated. Finally, the optimal candidate sequence is selected by a voting strategy to estimate targets position. Experimental results show that the proposed localization algorithm can effectively improve the localization accuracy within indoor distributed antenna system. -
YANG Ting and ZHU Liping. A review of modern indoor localization systems[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 10-11. GU Y, LO A, and NIEMEGEERS I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys Tutorials, 2009, 11(1): 13-32. doi: 10.1109/SURV.2009.090103. 李麗娜, 馬俊, 龍躍, 等. 基于LANDMARC與壓縮感知的雙段式室內(nèi)定位算法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050. LI Lina, MA Jun, LONG Yue, et al. Double stage indoor localization algorithm based on LANDMARC and compressive sensing[J]. Journal of Electronics Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/ JEIT151050. HARTER A, HOPPER A, STEGGLES P, et al. The anatomy of a context-aware application[J]. Wireless Networks, 2002, 8(2): 187-197. doi: 10.1023/A:1013767926256. WANG G, CHEN H, LI Y, et al. On Received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Communications Letters, 2012, 1(5): 536-539. doi: 10.1109/WCL.2012.072012.120428. JOURDAN D B, DEYST J J, WIN M Z, et al. Monte Carlo localization in dense multipath environments using UWB ranging[C]. IEEE International Conference on Ultra- Wideband, Zurich, Switzerland, 2005: 314-319. doi: 10.1109/ ICU.2005.1570005. NI L M, LIU Y, LAU Y C, et al. LANDMARC: Indoor location sensing using active RFID[J]. Wireless Networks, 2004(10): 701-710. doi: 10.1023/B: WINE.0000044029.06344. dd. LIU B, CHEN H, ZHONG Z, et al. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3532-3542. doi: 10.1109/TWC.2010.090210.100146. ZHANG W, YIN Q, CHEN H, et al. Distributed angle estimation for localization in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 527-537. doi: 10.1109/TWC.2012.121412.111346. DEL PERAL-ROSADO J A, LOPEZ-SALCEDO J A, SECOGRANADOS G, et al. Evaluation of the LTE positioning capabilities under typical multipath channels[C]. IEEE Advanced Satellite Multimedia Systems Conference, Baiona, Spain, 2012: 139-146. doi: 10.1109/ASMS-SPSC. 2012. 6333065. 田增山, 王向勇, 周牧, 等. 基于DBSCAN子空間匹配的蜂窩網(wǎng)室內(nèi)指紋定位算法[J]. 電子與信息學(xué)報(bào), 2017, 39(5): 1157-1163. doi: 10.11999/JEIT160768. TIAN Zengshan, WANG Xiangyong, ZHOU Mu, et al. DBSCAN based subspace matching for indoor cellular network fingerprint positioning algorithm[J]. Journal of Electronics Information Technology, 2017, 39(5): 1157-1163. doi: 10.11999/JEIT160768. CHEN H, LIU B, HUANG P, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks Applications, 2012, 17(1): 90-99. doi: 10.1007/ s11036-010-0281-3. WANG G and CHEN H. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1560-1568. doi: 10.1109/TWC.2011.030311.101011. HUANG B, XIE L, and YANG Z. TDOA-based source localization with distance-dependent noises[J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 468-480. doi: 10.1109/TWC.2014.2351798. YANG Congfeng and WANG Fengshuai. Joint TDOA and AOA location algorithm[J]. Journal of Systems Engineering Electronics, 2013, 24(2): 183-188. doi: 10.1109/JSEE.2013. 00023. TIAN Zengshan, LI Ze, ZHOU Mu, et al. PILA: Sub-meter localization using CSI from commodity Wi-Fi devices[J]. Sensors, 2016, 16(10): 1664. doi: 10.3390/s16101664. 陳軍. 高能效的分布式天線系統(tǒng)研究[D]. [博士論文], 華南理工大學(xué), 2015. CHEN Jun. Research on high energy-efficient distributed antenna system[D]. [Ph.D. dissertation], South China University of Technology, 2015. ZHANG Qiulin and ZHU Xijun. Study of the thinning algorithm for thenar palmprint[C]. IEEE Computer Society, First Acis International Symposium on Cryptography, and Network Security, Data Mining and Knowledge Discovery, E-Commerce and ITS Applications, and Embedded Systems, 2010: 179-182. doi: 10.1109/CDEE.2010.100. FENG Xingkui, LI Linyan, and YAN Zuquan. A new thinning algorithm for fingerprint image[J]. Journal of Image Graphics, 1999, 4(10): 835-838. LAM L, LEE S W, and SUEN C Y. Thinning methodologies A comprehensive survey[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1992, 14(9): 869-885. doi: 10.1109/34.161346. LIU B, REN F, SHEN J, et al. Advanced self-correcting time synchronization in wireless sensor networks[J]. IEEE Communications Letters, 2010, 14(4): 309-311. doi: 10.1109/ LCOMM.2010.04.092364. 盛驟, 謝式千, 潘承毅. 概率論與數(shù)理統(tǒng)計(jì)[M]. 第4版, 北京: 高等教育出版社, 2008: 163-168. SHENG Zhou, XIE Shiqian, and PAN Chengyi. Probability Theory and Mathematical Statistics[M]. 4th Ed., Beijing: Hight Educatin Press, 2008: 163-168. -