一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于子空間的三階多項式相位信號快速稀疏分解算法

歐國建 蔣清平 秦長春

歐國建, 蔣清平, 秦長春. 基于子空間的三階多項式相位信號快速稀疏分解算法[J]. 電子與信息學報, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593
引用本文: 歐國建, 蔣清平, 秦長春. 基于子空間的三階多項式相位信號快速稀疏分解算法[J]. 電子與信息學報, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593
OU Guojian, JIANG Qingping, QING Changchun. A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace[J]. Journal of Electronics & Information Technology, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593
Citation: OU Guojian, JIANG Qingping, QING Changchun. A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace[J]. Journal of Electronics & Information Technology, 2018, 40(3): 648-655. doi: 10.11999/JEIT170593

基于子空間的三階多項式相位信號快速稀疏分解算法

doi: 10.11999/JEIT170593
基金項目: 

重慶市教委科學技術研究項目(KJ1602909, KJ1503004),國家自然科學基金(61371164),重慶電子工程職業(yè)學院智能機器技術研究中心(XJPT201705)

A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace

Funds: 

The project of ChongQing municipal education Commission (KJ1602909, KJ1503004), The National Natural Science Foundation of China (61371164), Intelligent Robot Techndogy Research Center of Electronic Engineering (XJPT201705)

  • 摘要: 針對稀疏分解冗余字典中原子數(shù)量龐大的缺點,該文提出一種三階多項式相位信號的快速稀疏分解算法。該算法根據(jù)三階多項式相位信號的特點,把原有信號變換成兩個子空間信號,并根據(jù)這兩個子空間信號構建相應的冗余字典,然后采用正交匹配追蹤法來完成其稀疏分解,最后利用稀疏分解原理完成原有信號的稀疏分解。該算法把原有信號變換成兩個不同子空間信號,構建了兩個不同的冗余字典,對比采用一個冗余字典庫,這種采用兩個冗余字典的算法大大減少了原子數(shù)量,并且通過快速傅里葉變換,在一個冗余字典進行稀疏分解時,同時找到另一個冗余字典中的最匹配的原子。因此該算法通過減少原子數(shù)量和采用快速傅里葉變換大大加快了稀疏分解速度。實驗結(jié)果表明,相比于采用Gabor原子構建的冗余字典,采用匹配追蹤算法與遺傳算法及最近提出的基于調(diào)制相關劃分的快速稀疏分解,它的稀疏分解速度更快,并且具有更好的收斂性。
  • OU G J , YANG S Z, DENG J X, et al. A refined estimator of multicomponent third-Order polynomial phase signals[J]. IEICE Transactions on Communications, 2016,E99-B(1): 143-151. doi: 10.1587/transcom.2015EBP3131.
    DJUROVI I and SIMEUNOVI M. Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD[J]. Signal Processing, 2015, 106(1): 253-258. doi: 10.1016/j.sigpro.2014.08.007.
    SIMEUNOVI M and DJUROVI I. Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 771-782. doi: 10.1109/TSP.2015.2491887.
    DENG Z, XU R, ZHANG Y, et al. Compound time-frequency domain method for estimating parameters of uniform- sampling polynomial-phase signals on the entire identifiable region[J]. IET Signal Processing, 2016, 10(7): 743-751. doi: 10.1049/iet-spr.2015.0361.
    RAKOVI P, SIMEUNOVI M, and DJUROVI I. On improvement of joint estimation of DOA and PPS coefficients impinging on ULA[J]. Signal Processing, 2017, 134: 209-213. doi: 10.1016/j.sigpro.2016.12.015.
    LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar Sonar Naving, 2008, 2(6): 395-403. doi: 10.1049/iet-rsn: 20070101.
    WANG Yong and JIANG Yicheng. ISAR imaging of a ship target using product high-order matched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 658-661. doi: 10.1109/LGRS.2009.2013876.
    OSHEA P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393. doi: 10.1109/TSP.2003.821097.
    歐國建, 楊士中, 蔣清平, 等. 一種三階多項式相位信號去噪的字典學習算法[J]. 電子與信息學報, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726.
    OU G J, YANG S Z, JIANG Q P, et al. A dictionary learning algorithm for denoising cubic phase signal[J]. Journal of Electronics Information Technology, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726.
    JAFARI M G and PLUMBLEY M D. Fast dictionary learning for sparse representations of speech signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1025-1031. doi: 10.1109/JSTSP.2011.2157892.
    ZHAO Y, WU Z, YANG Z, et al. A novel signal sparse decomposition based on modulation correlation partition[J]. Neurocomputing, 2016, 171(1): 736-743. doi: 10.1016/j.neucom.2015.07.013.
    MOHAMMADI M R, FATEMIZADEH E, and MAHOOR M H. Non-negative sparse decomposition based on constrained smoothed norm[J]. Signal Processing, 2014, 100: 4250. doi: 10.1016/j.sigpro.2014.01.010.
    MARTI-LOPEZA F and KOENIGB T. Approximating method of frames[J]. Digital Signal Processing, 2003, 13(3): 519-529. doi: 10.1016/S1051-2004(02)00024-6.
    GORODNITSKY I F and BHASKAR D R. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. doi: 10.1109/78.558475.
    CHEN S, DONOHO D, and SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61. doi: 10.1137/S1064827596304010.
    MOHAMED A and DAVATZIKOS C. Shape representation via best orthogonal basis selection[C]. International Conference on Medical Image Computing Computer- Assisted Intervention, 2004, 3216: 225-233. doi: 10.1007/978-3-540-30135-6_28.
    MALLAT S and ZHANG Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082.
    趙學軍, 李育珍, 雷書彧. 基于遺傳算法優(yōu)化的稀疏表示圖像融合算法[J]. 北京郵電大學學報, 2016, 39(2): 73-76. doi: 10.13190/j.jbupt.2016.02.015.
    ZHAO Xuejun, LI Yuzhen and LEI Shuyu. An Image fusion method with sparse representation based on genetic algorithm optimization[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2): 73-76. doi: 10. 13190/j.jbupt.2016.02.015.
    全盛榮, 張?zhí)祢U, 王俊霞, 等. 基于稀疏分解的SFM信號的時頻分析方法[J]. 電子技術應用, 2016, 42(6): 87-90. doi: 10. 16157/j.issn.0258-7998.2016.06.024.
    QUAN Shengrong, ZHANG Tianqi, WANG Junxia, et al. A new time-frequency analysis method of sinusoidal frequency modulation signals based on sparse decomposition[J]. Application of Electronic Technique, 2016, 42(6): 87-90. doi: 10.16157/j.issn.0258-7998.2016.06.024.
    李應, 陳秋菊. 基于優(yōu)化的正交匹配追蹤聲音事件識別[J]. 電子與信息學報, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120.
    LI Ying and CHEN Qiuju. Sound event recognition based on optimized orthogonal matching pursuit[J]. Journal of Electronics Information Technology, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120.
    王麗, 馮燕. 基于粒子群優(yōu)化的圖像稀疏分解算法研究[J]. 計算機仿真, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080.
    WANG Li and FENG Yan. Sparse decomposition of images based on particle swarm optimization[J]. Computer Simulation, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080.
    王在磊, 和紅杰, 王建英, 等. 基于核心原子庫和FHT的圖像MP稀疏分解快速算法[J]. 鐵道學報, 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009.
    WANG Zailei, HE Hongjie, WANG Jianying, et al. Fast algorithm for image MP sparse decomposition based on FHT and core dictionary[J]. Journal of the China Railway Society, 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009.
    邵君, 尹忠科, 王建英, 等. 信號稀疏分解中過完備原子庫的集合劃分[J]. 鐵道學報, 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015.
    SHAO Jun, YIN Zhongke, WANG Jianying, et al. Set partitioning of the over-complet dictionary in signal sparse decomposition[J]. Journal of the China Railway Society, 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015.
    王聰, 徐敏強, 李志成. 齒輪箱故障診斷中的正交匹配追蹤算法[J]. 哈爾濱工業(yè)大學學報 , 2017, 49(4): 126-130. doi: 10. 11918/j.issn.0367-6234.201505053.
    WANG Cong, XU Minqiang, and LI Zhicheng. Gearbox fault diagnosis based on orthogonal matching pursuit algorithm[J]. Journal of Harbin of Technology, 2017, 49(4): 126-130. doi: 10.11918/j.issn.0367-6234.201505053.
    WU Y, SO H C, and LIU H. Subspace-based algorithm for parameter estimation of polynomial phase signals[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4977-4983. doi: 10.1109/TSP.2008.927457.
  • 加載中
計量
  • 文章訪問數(shù):  1217
  • HTML全文瀏覽量:  109
  • PDF下載量:  179
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-06-21
  • 修回日期:  2017-11-29
  • 刊出日期:  2018-03-19

目錄

    /

    返回文章
    返回