一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

融合時空特征的視頻序列表情識別

王曉華 夏晨 胡敏 任福繼

王曉華, 夏晨, 胡敏, 任福繼. 融合時空特征的視頻序列表情識別[J]. 電子與信息學(xué)報, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
引用本文: 王曉華, 夏晨, 胡敏, 任福繼. 融合時空特征的視頻序列表情識別[J]. 電子與信息學(xué)報, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
Citation: WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592

融合時空特征的視頻序列表情識別

doi: 10.11999/JEIT170592
基金項目: 

國家自然科學(xué)基金(61672202, 61432004, 61300119),國家自然科學(xué)基金深圳聯(lián)合基金重點項目(U1613217),江蘇省物聯(lián)網(wǎng)移動互聯(lián)技術(shù)工程實驗室開放課題(JSWLW-2017-017)

Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences

Funds: 

The National Natural Science Foundation of China (61672202, 61432004, 61300119), The National Natural Science Foundation of China -Shenzhen Joint Foundation (Key Project) (U1613217), Open foundation of ?The Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province (JSWLW-2017-017)

  • 摘要: 針對視頻表情識別,靜態(tài)特征不能有效描述人臉區(qū)域沿時間軸動態(tài)變化信息的局限,該文提出一種融合動態(tài)紋理信息和運動信息的表情識別方法,借鑒LBP-TOP原理,提出具有時空域描述能力的時空韋伯局部描述子(STWLD)來提取動態(tài)紋理信息,同時采用分塊光流直方圖(BHOF)描述運動信息,最后利用SVM對融合后的紋理和運動信息完成表情分類。在CK+和MMI表情數(shù)據(jù)庫上的交叉實驗結(jié)果表明,相比基于單一特征的識別方法,所提方法取得了更好的效果;與其他相關(guān)方法的對比實驗也驗證了該方法的優(yōu)越性。
  • CHEON Y and KIM D. Natural facial expression recognition using differential-AAM and manifold learning[J]. Pattern Recognition, 2009, 42(7): 1340-1350. doi: 10.1016/j.patcog. 2008.10.010.
    PAN Z, POLCEANU M, and LISETTI C. On constrained local model feature normalization for facial expression recognition[C]. International Conference on Intelligent Virtual Agents. Los Angeles, CA, USA, 2016: 369-372. doi: 10.1007/978-3-319-47665-0_35.
    ZHU X and RAMANAN D. Face detection, pose estimation, and landmark localization in the wild[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 2879-2886. doi: 10.1109 /CVPR.2012.6248014.
    ZHAO L, WANG Z, and ZHANG G. Facial expression recognition from video sequences based on spatial-temporal motion local binary pattern and Gabor multiorientation fusion histogram[J]. Mathematical Problems in Engineering, 2017, (1): 1-12. doi: 10.1155/2017/7206041.
    ZHOU J, ZHANG S, MEI H, et al. A method of facial expression recognition based on Gabor and NMF[J]. Pattern Recognition and Image Analysis, 2016, 26(1): 119-124. doi: 10.1134/S1054661815040070.
    CHEN J, SHAN S, HE C, et al. WLD: A robust local image descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720. doi: 10.1109/ TPAMI.2009.155.
    ZHAO G and PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928. doi: 10.1109/ TPAMI.2007.111.
    付曉峰, 付曉鵑, 李建軍, 等. 視頻序列中基于多尺度時空局部方向角模式直方圖映射的表情識別[J]. 計算機輔助設(shè)計與圖形學(xué)學(xué)報, 2015, 27(6): 1060-1066.
    FU Xiaofeng, FU Xiaojuan, LI Jianjun, et al. Facial expression recognition using multi-scale spatiotemporal local orienta-tional pattern histogram projection in video sequences[J]. Journal of Computer Aided Design Computer Graphics, 2015, 27(6): 1060-1066.
    KAMAROL S K A, JAWARD M H, PARKKINEN J, et al. Spatiotemporal feature extraction for facial expression recognition[J]. IET Image Processing, 2016, 10(7): 534-541. doi: 10.1049/iet-ipr.2015.0519.
    MEINHARDT-Llopis E, P?REZ J S, and KONDERMANN D. Horn-schunck optical flow with a multi-scale strategy[J]. Image Processing on Line, 2013, 20: 151-172. doi: 10.5201/ ipol.2013.20.
    張軒閣, 田彥濤, 顏飛, 等. 基于全局光流特征的微表情識別[J]. 模式識別與人工智能, 2016, 29(8): 760-768. doi: 10.16451 /j.cnki.issn1003-6059.201608011.
    ZHANG Xuange, TIAN Yantao, YAN Fei, et al. Micro- expression recognition based on global optical flow feature[J]. Pattern Recognition and Artificial Intelligence. 2016, 29(8): 760-768. doi: 10.16451/j.cnki.issn1003-6059.201608011.
    YACOOB Y and DAVIS L S. Recognizing human facial expressions from long image sequences using optical flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6): 636-642. doi: 10.1109/34.506414.
    LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), California, USA, 2010: 94-101. doi: 10.1.1.182.3759.
    PANTIC M, VALSTAR M, RADEMAKER R, et al. Web-based database for facial expression analysis[C]. IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 2005: 317-321. doi: 10.1109/ ICME.2005.1521424.
    邱玉, 趙杰煜, 汪燕芳. 結(jié)合運動時序性的人臉表情識別方法[J]. 電子學(xué)報, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn. 0372-2112.2016.06.007.
    QIU Yu, ZHAO Jieyu, and WANG Yanfang. Facial expression recognition using temporal relations among facial movements[J]. Acta Electronica Sinica, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn.0372-2112.2016.06.007.
    FAN X and TJAHJADI T. A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences[J]. Pattern Recognition, 2015, 48(11): 3407-3416. doi: 10.1016/j.patcog. 2015.04.025.
    LONG F and BARTLETT M S. Video-based facial expression recognition using learned spatiotemporal pyramid sparse coding features[J]. Neurocomputing, 2016, 173: 2049-2054. doi: 10.1016/j.neucom.2015.09.049
    GUPTA O, RAVIV D, and RASKAR R. Multi-velocity neural networks for facial expression recognition in videos[J]. IEEE Transactions on Affective Computing, 1949, 99: 1.
    FANG H, MAC Parthalin N, AUBREY A J, et al. Facial expression recognition in dynamic sequences: An integrated approach[J]. Pattern Recognition, 2014, 47(3): 1271-1281. doi: 10.1016/j.patcog.2013.09.023.
    WANG Z, WANG S, and Ji Q. Capturing complex spatio- temporal relations among facial muscles for facial expression recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA. 2013: 3422-3429. doi: 10.1109/CVPR.2013.439.
    JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 2983-2991. doi: 10.1109/ICCV.2015.341.
  • 加載中
計量
  • 文章訪問數(shù):  1003
  • HTML全文瀏覽量:  174
  • PDF下載量:  301
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-06-20
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-03-19

目錄

    /

    返回文章
    返回