水下滑翔機(jī)組網(wǎng)的動(dòng)態(tài)MAC機(jī)制
doi: 10.11999/JEIT170590
-
1.
(天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院 天津 300072) ②(海南大學(xué)信息學(xué)院 ???570208)
國家自然科學(xué)基金(61571318, 61701335),青海省自然科學(xué)基金重點(diǎn)項(xiàng)目(2015-ZJ-904),海南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(ZDYF 2016153)
Dynamic MAC Mechanism for Underwater Glider Networks
-
1.
(School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)
-
2.
(College of Information Science &
The National Natural Science Foundation of China (61571318, 61701335), The Key Project of Qinghai Province on Science and Technology (2015-ZJ-904), The Key Project of Hainan Province on Science and Technology (ZDYF2016153)
-
摘要: 水下滑翔機(jī)的運(yùn)動(dòng)導(dǎo)致滑翔機(jī)位置和相對距離的變化,引起了滑翔機(jī)間的信號傳輸時(shí)間改變,進(jìn)而導(dǎo)致水下滑翔機(jī)間通信可靠性的下降。傳統(tǒng)水下媒體接入控制(MAC)協(xié)議面向靜態(tài)拓?fù)渚W(wǎng)絡(luò),不適用于動(dòng)態(tài)變化的網(wǎng)絡(luò)拓?fù)?。該文提出一種水下滑翔機(jī)組網(wǎng)的動(dòng)態(tài)MAC機(jī)制。新機(jī)制利用水下滑翔機(jī)運(yùn)動(dòng)模型進(jìn)行位置預(yù)測,根據(jù)預(yù)測結(jié)果和相鄰滑翔機(jī)間的位置共享動(dòng)態(tài)計(jì)算時(shí)隙長度,并進(jìn)行分配和預(yù)約收發(fā),水下滑翔機(jī)在收發(fā)過程中以團(tuán)隊(duì)協(xié)作方式避免沖突。實(shí)驗(yàn)結(jié)果表明,該機(jī)制的數(shù)據(jù)包投遞率與運(yùn)動(dòng)預(yù)測MAC(P-MAC)和預(yù)約MAC(R-MAC)協(xié)議相比分別提高了12%和25%,更適用于由水下滑翔機(jī)組成的動(dòng)態(tài)網(wǎng)絡(luò)。
-
關(guān)鍵詞:
- 水下滑翔機(jī)組網(wǎng) /
- 動(dòng)態(tài)媒體接入控制機(jī)制 /
- 團(tuán)隊(duì)協(xié)作
Abstract: The movement of the underwater gliders leads to the change in the position and relative distance among the gliders, which causes a change in the propagation delay of packets between gliders, and then it leads to a decrease in the reliability of communication between underwater gliders. The traditional underwater Media Access Control (MAC) protocols are for static topology networks and do not apply to dynamically varying network topology. Thus, a new MAC mechanism for the underwater glider networks is proposed. It predicts location based on underwater glider motion model. It calculates time slots dynamically according to the predicted results and the shared position information of underwater gliders. Then, it allocates time slots and reserves to the send and the receive. Underwater gliders avoid collisions with teamwork in the process of sending and receiving. Simulation results show that in this mechanism, the packet received rate increases by 12% and 25% comparing to the Prediction based MAC (P-MAC) protocol and Reservation based MAC (R-MAC) protocol, respectively. The result indicates that the new mechanism is more suitable for the dynamic network composed of underwater gliders. -
CLIMENT S, SANCHEZ A, CAPELLA J V, et al. Underwater acoustic wireless sensor networks: Advances and future trends in physical, MAC and routing layers[J]. Sensors, 2014, 14(1): 795-833. doi: 10.3390/s140100795. LIU J, WANG Z, ZUBA M, et al. DA-Sync: A Doppler- assisted time-synchronization scheme for mobile underwater sensor networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(3): 582-595. doi: 10.1109/TMC. 2013.13. 黃梅, 孫海信, 程恩, 等. 水聲OFDM系統(tǒng)多普勒頻移和信道的聯(lián)合估計(jì)[J]. 廈門大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 52(3): 326-332. doi: 10.6043/j.issn.0438-0479.2013.03.008. HUANG Mei, SUN Haixin, CHENG En, et al. Joint estimation of Doppler shift and channel in underwater acoustic OFDM system[J]. Journal of Xiamen University (Natural Science), 2013, 52(3): 326-332. doi: 10.6043/j.issn. 0438-0479.2013.03. 008. RUDNICK D L, DAVIS R E, and SHERMAN J T. Spray underwater glider operations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122. doi: 10.1175/ JTECH-D-15-0252.1. SONG L and CHI E. A traffic adaptive asynchronous media access control protocol of wireless sensor networks[C]. 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2016: 669-673. CHEN K, MA M, CHENG E, et al. A survey on MAC protocols for underwater wireless sensor networks[J]. IEEE Communications Surveys Tutorials, 2014, 16(3): 1433-1447. doi: 10.1109/SURV.2014.013014.00032. CHEN B and POMPILI D. Modeling position uncertainty of networked autonomous underwater vehicles[J]. Ad Hoc Networks, 2015, 34(1): 184-195. doi: 10.1016/j.adhoc.2014. 09.003. XUE D, WU Z, and WANG S. Dynamical analysis of autonomous underwater glider formation with environmental uncertainties[J]. Procedia IUTAM, 2015, 13(1): 108-117. doi: 10.1016/j.piutam.2015.01.007. 劉方. 混合驅(qū)動(dòng)水下滑翔機(jī)系統(tǒng)設(shè)計(jì)與運(yùn)動(dòng)行為研究[D]. [博士論文], 天津大學(xué), 2014. LIU Fang. System design and motion behaviors analysis of hybrid underwater glider[D]. [Ph.D. dissertation], Tianjin University, 2014. LEONARD N E, PALEY D A, DAVIS R E, et al. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay[J]. Journal of Field Robotics, 2010, 27(6): 718-740. doi: 10.1002/rob.20366. SU Y, ZHU Y, MO H, et al. A joint power control and rate adaptation MAC protocol for underwater sensor networks[J]. Ad Hoc Networks, 2015, 26(1): 36-49. doi: 10.1016/j.adhoc. 2014.10.01. 金志剛, 蘇毅珊, 劉自鑫, 等. 基于運(yùn)動(dòng)預(yù)測的水下傳感器網(wǎng)絡(luò)MAC協(xié)議[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 728-734. doi: 10.3724/SP.J.1146.2012.00970. JIN Zhigang, SU Yishan, LIU Zixin, et al. Motion prediction based MAC for underwater wireless sensor networks[J]. Journal of Electronics Information Technology, 2013, 35(3): 728-734. doi: 10.3724/SP.J.1146.2012.00970. -
計(jì)量
- 文章訪問數(shù): 1331
- HTML全文瀏覽量: 185
- PDF下載量: 138
- 被引次數(shù): 0