對(duì)流層散射雙向時(shí)間比對(duì)中對(duì)流層斜延遲實(shí)時(shí)估計(jì)
doi: 10.11999/JEIT170581
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61671468, 61701525)
Real-time Estimation of Tropospheric Slant Delay in Two-way Troposphere Time Transfer
Funds:
The National Natural Science Foundation of China (61671468, 61701525)
-
摘要: 對(duì)流層斜延遲是對(duì)流層散射雙向時(shí)間比對(duì)中一個(gè)重要誤差源,該文提出一種對(duì)流層散射雙向時(shí)間比對(duì)中對(duì)流層斜延遲實(shí)時(shí)估計(jì)方法。通過(guò)GPT2w模型計(jì)算測(cè)站氣象數(shù)據(jù),克服對(duì)流層斜延遲估計(jì)中對(duì)實(shí)時(shí)氣象數(shù)據(jù)的依賴。針對(duì)Hopfield模型中固定的對(duì)流層散射頂層高,利用幾何方法計(jì)算動(dòng)態(tài)對(duì)流層散射頂層高,以解決對(duì)流層散射雙向比對(duì)的實(shí)際應(yīng)用問(wèn)題。選取日本地區(qū)3個(gè)測(cè)站,兩兩進(jìn)行比對(duì),在驗(yàn)證Hopfield模型精度后,計(jì)算3組比對(duì)站在不同入射角和不同時(shí)間的對(duì)流層斜延遲。計(jì)算結(jié)果表明,對(duì)流層散射雙向時(shí)間比對(duì)中對(duì)流層斜延遲呈現(xiàn)出隨比對(duì)距離增大而增大,隨入射角增大而減小的特性,并且四季變化特性也比較明顯。3個(gè)比對(duì)站的對(duì)流層散射斜延遲10~35 m之間,經(jīng)比對(duì)抵消90%后的時(shí)間延遲為3.5~11.8 ns。
-
關(guān)鍵詞:
- 雙向時(shí)間比對(duì) /
- GPT2w模型 /
- Hopfield模型 /
- 斜延遲
Abstract: Tropospheric slant delay is a main error source in two way time transfer via tropospheric scatter communication. A method for real-time estimation of tropospheric slant in two way time transfer via tropospheric scatter communication is proposed. The meteorological data of the station are calculated by the GPT2w model to overcome the reliance on the real-time meteorological data in the estimation of tropospheric delay. In order to solve the problem of the fixed height of the top troposphere layer, the real height of the top troposphere layer is calculated by geometric method to solve the practical application. Three stations in Japan are selected and compared with each other. After verifying the accuracy of the Hopfield model, the tropospheric delay of the three groups at different angles and different time is calculated. The results show that the tropospheric slant delay in two-way troposphere time transfer increases with the increase of the distance, and decreases with the increase of the angle, and the variation characteristics of the four seasons are obvious. The tropospheric delay of the three stations is between 10~35 m, and the time delay after subtracting 90% is 3.5~11.8 ns.-
Key words:
- Two-way time transfer /
- GPT2w model /
- Hopfield model /
- Slant propagation delay
-
HUANG Yijiun, FUJIEDA Miho, TAKIGUCHI, Hiroshi, et al. Stability improvement of an operational two-way satellite time and frequency transfer system[J]. Metrologia, 2016, 53(2): 881-890. doi: 10.1088/0026-1394/53/2/881. SLIWCZYNSKI L, KREHLIK P, KOLODZIEJ J, et al. Fiber- optic time transfer for UTC-traceable synchronization for telecom networks[J]. IEEE Communications Standards Magazine, 2017, 1(1): 66-73. doi: 10.1109/MCOMSTD.2017.1600766ST. WILSON R. An investigation of time transfer accuracies over a utility microwave communications channe[J]. IEEE Transactions on Power Delivery, 1993, 8(3): 993-999. doi: 10.1109/61.252627. 劉強(qiáng), 孫際哲, 陳西宏, 等. 對(duì)流層雙向時(shí)間比對(duì)及其時(shí)延誤差分析[J]. 測(cè)繪學(xué)報(bào), 2014, 43(4): 341-347. doi: 10.13485/j.cnki. 11-2089.2014.0051. LIU Qiang, SUN Jizhe, CHEN Xihong, et al. Analysis of two way troposphere time transfer and its delay errors[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 341-347. doi: 10.13485/ j.cnki.11-2089.2014.0051. CHEN X H, LIU Q, HU D H, et al. Delay analysis of two way time transfer based on troposphere gradients[C]. Proceedings of the 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014), Beijing, China, 2014: 543-547. doi: 10.1049/ic.2014.0158. 陳西宏, 劉贊, 劉強(qiáng), 等. 對(duì)流層散射雙向時(shí)間比對(duì)中對(duì)流層斜延遲估計(jì)[J]. 國(guó)防科技大學(xué)學(xué)報(bào), 2016, 38(2): 171-176. doi: 10.11887/j.cn.201602028. CHEN Xihong, LIU Zan, LIU Qiang, et al. Tropospheric slant delay estimation in two-way troposphere time transfer[J]. Journal of National University of Defense Technology, 2016, 38(2): 171-176. doi: 10.11887/j.cn.201602028. 陳西宏, 吳文溢, 劉贊. 基于改進(jìn)射線描跡法的對(duì)流層斜延遲估計(jì)[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2468-2474. doi: 10.11999 /JEIT160023. CHEN Xihong, WU Wenyi, and LIU Zan. Estimation of tropospheric slant delay based on improved ray tracing method[J]. Journal of Electronics Information Technology, 2016, 38(10): 2468-2474. doi: 10.11999/JEIT160023. BOEHM J, HEINKELM R, and SCHUN H. Short note: A global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81(10): 679-683. doi: 10.1007/s00190- 007-0135-3. LAGLER K, SCHINDELEGGER M, BOEHM J, et al. GPT2: Empirical slant delay model for radio space geodetic techniques [J]. Geophys Research Letter, 2013, 40(6): 1069-1073. doi: 10.1002/grl.50288. BOEHM J, MOLLER, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2014, 19(3): 433-441. doi: 10.1007/s10291-014-0403-7. 陳西宏, 劉贊, 劉繼業(yè), 等. 低仰角下對(duì)流層散射斜延遲估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 408-412. doi: 10.11999/ JEIT150628. CHEN Xihong, LIU Zan, LIU Jiye, et al. Estimating tropospheric slant scatter delay at low elevation[J]. Journal of Electronics Information Technology, 2016, 38(2): 408-412. doi: 10.11999/JEIT150628. 姚宜斌, 胡羽豐, 張豹. 利用多源數(shù)據(jù)構(gòu)建全球天頂對(duì)流層延遲模型[J]. 科學(xué)通報(bào), 2016, 61(24): 2730-2741. doi: 10.1007/ N972015-01102. YAO Yibin, HU Yufeng, and ZHANG Bao. Establishment of a global zenith tropospheric delay model using multi-source data[J]. Science Bulletin, 2016, 61(24): 2730-2741. doi: 10.1007/N972015-01102. MARINI J. Correction of satellite tracking data for an arbitrary tropospheric profile[J]. Radio Science, 1972, 7(2): 223-231. doi: 10.1029/RS007i002p00223. DAVIS J, HERRING T, SHAPIRO I, et al. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 1985, 20(6): 1593-1607. doi: 10.1029/RS020i006p01593. CHEN G and HERRING T. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B9): 20489-20502. doi: 10.1029/97JB01739. NIELL A. Global mapping functions for the atmospheric delay at radio wavelengths[J]. Journal of Geophysical Research, 1996, 101(B2): 3227-3246. doi: 10.1029/95JB03048. BOEHM J and SCHUN H. Vienna mapping functions in VLBI analyses[J]. Geophysical Research Letters, 2004, 31(1): L01603. doi: 10.1029/2003GL018984. BOEHM J, NIELL A, TREGONING P, et al. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33(7): L07304. doi: 10.1029/2005GL025546. FOELSCHE U and KIRCHENGAST G. A new geometric mapping function for the hydrostatic delay at GPS frequencies[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(3): 153-157. doi: 10.1016/S1464-1895(01)00039-4. UPPALA S, KALLBERG P, SIMMONS A, et al. The ERA-40 re-analysis[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(612): 2961-3012. doi: 10.1256/qj.04.176. -
計(jì)量
- 文章訪問(wèn)數(shù): 1300
- HTML全文瀏覽量: 140
- PDF下載量: 181
- 被引次數(shù): 0