基于OFDM符號寬度的循環(huán)平穩(wěn)頻譜感知方法
doi: 10.11999/JEIT170577
-
1.
(福州大學電氣工程與自動化學院 福州 350116)
-
2.
(廈門大學嘉庚學院 漳州 363105)
國家自然科學基金(61673116, 61301096),福建省自然科學基金(2018J01789)
OFDM Symbol Duration Based Cyclostationary Spectrum Sensing Method
-
1.
(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116, China)
-
2.
(Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China)
The National Natural Science Foundation of China (61673116, 61301096), The Natural Science Foundation of Fujian Province (2018J01789)
-
摘要: 該文提出一種新的基于OFDM符號寬度的感知方法。該方法首先對接收到的每個OFDM符號在其符號周期內(nèi)進行循環(huán)自相關(guān)函數(shù)的估計,然后利用多元統(tǒng)計理論計算判決量和判決門限,最后將判決量和判決門限進行比較從而得到判決結(jié)果。該方法是非參數(shù)化的,因而能夠在噪聲不確定的情況下有效工作,并且該方法能夠極大簡化目前循環(huán)平穩(wěn)感知類算法的復雜度而只有細微的性能損失。此外,該文接著又提出一個非參數(shù)化多天線線性加權(quán)合并感知方法。仿真結(jié)果表明,所提合并方法通過合理地非參數(shù)化優(yōu)化加權(quán)系數(shù),與傳統(tǒng)循環(huán)平穩(wěn)感知方法相比,在復雜度顯著降低的同時,性能幾乎與傳統(tǒng)循環(huán)平穩(wěn)感知方法一致。
-
關(guān)鍵詞:
- 認知無線電 /
- 頻譜感知 /
- 循環(huán)平穩(wěn) /
- OFDM
Abstract: This paper proposes a new OFDM symbol duration based cyclostationary spectrum sensing method. The method first estimates the cyclic autocorrelation function from every received OFDM symbol during its symbol period, then constructs the test statistic and the threshold by using multivariate statistical analysis, and finally gets the decision result by comparing the test statistic with the threshold. The method is nonparametric so that it is immune from noise uncertainty. Simulation results show that the method can significantly reduce the complexity at the cost of a little performance loss, compared with conventional cyclostationary spectrum sensing method. Moreover, this paper further proposes a multiple antenna based nonparametric linear weighted combination scheme. Simulation results also show that the performance of the proposed combination scheme is almost the same as that of conventional cyclostationary spectrum sensing method while the proposed combination scheme has the advantage of complexity by optimizing the nonparametric weights reasonably.-
Key words:
- Cognitive radio /
- Spectrum sensing /
- Cyclostationarity; OFDM /
-
MITOLA J and MAGUIRE G Q. Cognitive radio: Making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210. ABDELMOHSEN A and WALAA H. Advances on spectrum sensing for cognitive radio networks: Theory and applications [J]. IEEE Communications Surveys Tutorials, 2017, 19(2): 1277-1304. doi: 10.1109/COMST.2016.2631080. ZENG Y and LIANG Y C. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/ TCOMM.2009.06.070402. 曹開田, 楊震. 一種新型的基于最大特征值的合作頻譜感知算法[J]. 電子與信息學報, 2011, 33(6): 1367-1372. doi: 10.3724/SP.J.1146.2010.01091. CAO Kaitian and YANG Zhen. A novel cooperative spectrum sensing algorithm based on the maximum eigenvalue[J]. Journal of Electronics Information Technology, 2011, 33(6): 1367-1372. doi: 10.3724/SP.J.1146. 2010.01091. SAEID S, ABBAS T, SAEED G, et al. Eigenvalue-based multiple antenna spectrum sensing: Higher order moments[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1168-1184. doi: 10.1109/TWC.2016.2640299. DANDAWATE A V and GIANNAKIS G B. Statistical tests for presence of cyclostationarity[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2355-2369. doi: 10.1109/ 78.317857. AREZUMAND H, AZMI P, and SADEGHI H. Cooperative spectrum sensing based on a low-complexity cyclostationary detection method for cognitive radio networks[C]. 2011 1st International eConference on Computer and Knowledge Engineering, Mashhad, Iran, 2011: 308-313. doi: 10.1109/ ICCKE.2011.6413370. CHOPRA R, GHOSH D, and MEHRA D K. Performance evaluation of FRESH filter based spectrum sensing for cyclostationary signals[J]. Physical Communication, 2016, 20: 17-32. doi: 10.1016/j.phycom.2016.04.004. ANDREA T, ROMANO F, and DANIA M. A low-complexity cyclostationary spectrum sensing for interference avoidance in femtocell LTE-A-based networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2747-2753. doi: 10.1109/ TVT.2015.2419877. WANG J, HUANG J, CHEN R, et al. Near-optimum nonparametric combination scheme for cyclostationarity- based spectrum-sensing method[J]. Circuits, Systems, and Signal Processing, 2017, 36(2): 867-878. doi: 10.1007/s00034- 016-0321-8. SENER D, ZOBIA I, PASCHALIS C S, et al. Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 159-172. doi: 10.1109 /JSAC.2016.2633058. TANDRA R and SAHAI A. SNR Walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4-17. doi: 10.1109/JSTSP.2007.914879. GAO F, QIAN C, QIAN H, et al. Sensing and recognition for multiple-primary-power-level scenario with noise uncertainty [J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2289-2300. doi: 10.1109/TVT.2016. 2574873. PREMA G and GAYATRI P. Blind spectrum sensing method for OFDM signal detection in cognitive radio communications[C]. 2014 International Conference on Communication and Network Technologies, Sivakasi, 2014: 42-47. doi: 10.1109/CNT.2014.7062722. ANDERSON T W. An Introduction to Multivariate Statistical Analysis[M]. Hoboken NJ: Wiley, 2004: 67-70, 176-178. -
計量
- 文章訪問數(shù): 1335
- HTML全文瀏覽量: 169
- PDF下載量: 166
- 被引次數(shù): 0