基于海情和三次樣條插值算法的艦船雷達(dá)散射截面優(yōu)化分析方法
doi: 10.11999/JEIT170562
-
2.
(南京師范大學(xué)電氣與自動(dòng)化工程學(xué)院 南京 210042)
國(guó)家自然科學(xué)基金(51475246),江蘇省自然科學(xué)基金(BK20161019, BK20131032),江蘇省高校自然科學(xué)基金(15KJB 470011)
Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm
-
2.
(School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China)
The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20161019, BK20131032), The University Science Research Project of Jiangsu Province (15KJB470011)
-
摘要: 不同風(fēng)浪等級(jí)下的海面會(huì)對(duì)船艦?zāi)繕?biāo)雷達(dá)散射截面(RCS)分析產(chǎn)生強(qiáng)烈影響。該文建立了一種船艦?zāi)P?,利用物理光學(xué)法與矩量法的混合算法(PO-MOM)分析了不同海情下的船艦?zāi)繕?biāo)遠(yuǎn)場(chǎng)單站RCS。之后研究了海情對(duì)船艦?zāi)繕?biāo)RCS測(cè)試結(jié)果的影響。最后提出了基于3次樣條插值(Cubic Spline Interpolation, CSI)算法的優(yōu)化補(bǔ)償方法。結(jié)果表明,隨著海情等級(jí)的增加,艦船RCS降低;利用3次樣條插值算法進(jìn)行補(bǔ)償,其補(bǔ)償結(jié)果的平均值誤差小于0.38 dBsm,最大值誤差小于0.05 dBsm,因此能有效地減少海情對(duì)船艦RCS測(cè)試結(jié)果的影響。
-
關(guān)鍵詞:
- 雷達(dá)散射截面 /
- 海情 /
- 物理光學(xué)與矩量法混合算法 /
- 3次樣條插值算法
Abstract: The sea under different wave levels has an strong impact on the ship target Radar Cross Section (RCS) analysis. The far-field single-station RCS analysis model is established for the ship under different sea conditions based on the Physical Optics with Method Of Moments (PO-MOM) hybrid algorithm. Then the impact of sea conditions on ship RCS results is studied. The ship RCS results are reduced with the sea wave level increasing. Finally, an optimization ship RCS compensation method is proposed under different sea conditions based on Cubic Spline Interpolation (CSI) algorithm. The results show that the average value error and maximum value error of ship RCS results are less than 0.38 dBsm and 0.05 dBsm, respectively by employing the proposed method, which can reduce the influence of sea conditions on ship RCS analysis effectively. -
朱英富, 張國(guó)良. 艦船隱身技術(shù)[M]. 哈爾濱: 哈爾濱工程大學(xué), 2003: 10-23. ZHU Yingfu and ZHANG Guoliang. Hiding Technology of Vessel[M]. Harbin: Harbin Engineering University, 2003: 10-23. 許小劍, 李曉飛, 習(xí)桂杰, 等. 時(shí)變海面雷達(dá)目標(biāo)散射現(xiàn)象學(xué)模型[M]. 北京: 國(guó)防工業(yè)出版社, 2013: 218-224. XU Xiaojian, LI Xiaofei, XI Guijie, et al. Radar Phenomenological Models for Ships on Time-evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013: 218-224. 崔凱, 許小劍, 毛士藝. 基于高頻混合方法的海上目標(biāo)電磁散射特性分析[J]. 電子與信息學(xué)報(bào), 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866. CUI Kai, XU Xiaojian, and MAO Shiyi. EM backscattering of simplified ship model over sea surface based on a high frequency hybrid method[J]. Journal of Electronics Information Technology, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866. GANESH M M, JAGADEESH V K, and ROOPCHAND J. Computation and analysis of RCS for a kinetic energy type anti armour missile at Ka band[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(1): 45-59. doi: 10.3233/JAE-130139. LI Yajun, WEI Yinsheng, ZHU Yongpeng, et al. Analysis and simulation for broadening first-order sea clutter spectrum in high frequency hybrid sky-surface wave propagation mode[J]. IET Radar, Sonar Navigation, 2015, 9(6): 609-621. doi: 10.1049/iet-rsn.2014.0008. PASQUALE I, RAFFAELLA G, and PHILIP W. A model for the backscattering from a canonical ship in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1163-1175. doi: 10.1109/JSTARS.2015.2443557. MIANROODI R Y, HEIDAR H, and ARMAKI H M. Expandable shipboard decoy including adequate RCS by using trihedral corner reflectors[J]. IET Science, Measurement Technology, 2016, 10(5): 485-491. doi: 10.1049/iet-smt.2015.0228. LI Chao, HE Siyuan, YANG Jiong, et al. Monostatic scattering from two-dimensional two-layer rough surfaces using hybrid 3DMLUV-ACA method[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 42(1): 1-11. doi: 10.3233/JAE-121640. LIU Peng and JIN Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 950-956. doi: 10.1109/TGRS.2004.825583. 關(guān)瑩, 龔書喜, 張帥, 等. NURBS曲面建模的電大目標(biāo)的寬帶RCS快速計(jì)算[J]. 電子與信息學(xué)報(bào), 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637. GUAN Ying, GONG Shuxi, ZHANG Shuai, et al. Fast computation of wideband RCS of electrically large targets modeled with NURBS surfaces[J]. Journal of Electronics Information Technology, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637. KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress In Electromagnetics Research M, 2012, 27(1): 11-26. doi: 10.2528/PIERM 12101211. CERRUTI M, PASTORINO M, RANDAZZO A, et al. A radar cross section and radar performance evaluation tool for the early stage ship design (ESSD) phase[C]. Oceans, Genova, Italy, 2015: 1-5. ZHAO Ye, YUAN Xiaofeng, ZHANG Min, et al. Radar scattering from the composite ship-ocean scene: facet-based asymptotical model and specular reflection weighted model[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4810-4815. doi: 10.1109/TAP.2014.2330869. XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 1495-1505. doi: 10.1109/TAP.2009.2016691. HOSSEIN B and MOJTABA D. RCS of a target above a random rough surface with impedance boundaries using GO and PO methods[C]. Antennas and Propagation Society International Symposium, Chicago, USA, 2012: 1-2. ZHANG Lanchao and JIANG Tao. Analysis of radio wave scattering from rough sea surfaces based on high frequency approximation algorithm[C]. Antennas and Propagation, Harbin, China, 2014: 963-966. ZHANG Min, ZHAO Ye, LI Jinxing, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775-784. doi: 10.1109/TAP.2016.2633066. MEANA J G, MARTINE LORENZO J A, RAPPAPORT C, et al. A PO-MoM comparison for electrically large dielectric geometries[C]. Antennas and Propagation Society International Symposium, Piscataway, USA, 2009: 1-4. 崔浩, 舒朝君, 王亞. 基于三次樣條插值的鹽度監(jiān)測(cè)控制裝置的溫度補(bǔ)償算法[J]. 儀表技術(shù)與傳感器, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016.06.026. CUI Hao, SHU Chaojun, and WANG Ya. Temperature compensation of salinity monitoring and control device based on cubic spline interpolation[J]. Instrument Technique and Sensor, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016. 06.026. -
計(jì)量
- 文章訪問(wèn)數(shù): 1305
- HTML全文瀏覽量: 162
- PDF下載量: 228
- 被引次數(shù): 0