基于狀態(tài)映射的AES算法硬件混淆設計
doi: 10.11999/JEIT170556
-
1.
(寧波大學電路與系統(tǒng)研究所 寧波 315211)
浙江省自然科學基金(LY18F040002),國家自然科學基金(61404076, 61474068),浙江省公益項目(2015C31010, 2016C 31078),寧波市自然科學基金(2014A610148, 2015A610107),王寬誠幸?;?/p>
Design of Hardware Obfuscation AES Based on State Deflection Strategy
The Zhejiang Provincial Natural Science Foundation (LY18F040002), The National Natural Science Foundation of China (61404076, 61474068), The ST Plan of Zhejiang Provincial Science and Technology Department (2015C 31010, 2016C31078), The Ningbo Natural Science Foundation (2014A610148, 2015A610107), The K. C. Wong Magna Fund in Ningbo University, China
-
摘要: 代碼混淆利用系統(tǒng)自身邏輯來保護內(nèi)部重要信息和關鍵算法,常用于軟件代碼的安全防護,確保開發(fā)者和用戶的利益。如何在硬件電路上實現(xiàn)混淆、保護硬件IP核的知識產(chǎn)權,也是亟待解決的問題。該文通過對硬件混淆和AES算法的研究,提出一種基于狀態(tài)映射的AES算法硬件混淆方案。該方案首先利用冗余和黑洞兩種狀態(tài)相結合的狀態(tài)映射方式,實現(xiàn)有限狀態(tài)機的混淆;然后,采用比特翻轉(zhuǎn)的方法,實現(xiàn)組合邏輯電路的混淆;最后,在SMIC 65 nm CMOS工藝下設計基于狀態(tài)映射的AES算法硬件混淆電路,并采用Toggle、數(shù)據(jù)相關性和代碼覆蓋率等評價硬件混淆的效率和有效性。實驗結果表明,基于狀態(tài)映射的AES算法硬件混淆電路面積和功耗分別增加9%和16%,代碼覆蓋率達到93%以上。Abstract: Obfuscation is used to safeguard lawful rights and interests of developers and users in software security, by protecting critical information and algorithms with the system logic relation. Also, how to achieve obfuscation method to protect the hardware IP core is becoming an urgent problem. In this paper, a hardware obfuscation scheme based on deflection strategy is proposed by studying the obfuscation method and the AES algorithm. The deflection strategy with redundancy and black hole states are used to realize the Finite State Machine (FSM) obfuscation, and the bit flip method is used to realize the combinational logic obfuscation. Finally, the proposed hardware obfuscation AES algorithm is designed in SMIC 65 nm CMOS process. The parameters of toggle, data correlation and code coverage are selected to evaluate the efficiency and effectiveness of hardware confusion. Experimental results show that the area and power consumption of the hardware obfuscation AES algorithm is increased by 9% and 16% respectively, and the code coverage rate is over 93%.
-
Key words:
- State deflection /
- Hardware obfuscation /
- AES algorithm /
- Reverse engineering /
- IP security
-
楊宇波. 代碼混淆模型研究[D]. [博士論文], 北京郵電大學, 2015. 2015年度檢察機關保護知識產(chǎn)權十大典型案例[OL]. http: //news.xinhuanet.com/legal/2016-05/05/c_128959767.htm, 2016. YANG Yubo. Research on code obfuscation model[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2015. BARAK B, GOLDREICH O, IMPAGLIAZZO R, et al. On the Impossibility of obfuscating programs[J]. Lecture Notes in Computer Science, 2001, 2139: 1-18. doi: 10.1007/3-540- 44647-8-1. 林水明, 吳偉民, 陶桂華, 等. 基于主成分分析的代碼混淆有效性綜合評估模型[J]. 計算機應用研究, 2016, 33(9): 2819-2822, 2840. doi: 10.3969/j.issn.1001-3695.2016.09.059. LIN Shuiming, WU Weimin, TAO Guihua, et al. PCA-based code obfuscation effective comprehensive assessment model [J]. Application Research of Computers, 2016, 33(9): 2819-2822, 2840.. doi: 10.3969/j.issn.1001-3695.2016.09.059. 趙玉潔, 湯戰(zhàn)勇, 王妮, 等. 代碼混淆算法有效性評估[J]. 軟件學報, 2012, 23(3): 700-711. doi: 10.3724/SP.J.1001.2012. 03994. ZHAO Yujie, TANG Zhanyong, WANG Ni, et al. Evaluation of code obfuscating transformation[J]. Journal of Software, 2012, 23(3): 700-711. doi: 10.3724/SP.J.1001.2012.03994. 謝鑫, 劉粉林, 蘆斌, 等. 基于多層次屬性加權的代碼混淆有效性量化評估[J]. 計算機科學, 2015, 42(3): 167-173. doi: 10.11896/j.ssn.1002-137X.2015.3.035. XIE Xin, LIU Fenlin, LU Bin, et al. Quantitative evaluation for effectiveness of code obfuscation based on multi-level weight attributes[J]. Computer Science, 2015, 42(3): 167-173. doi: 10.11896/j.ssn.1002-137X.2015.3.035. ALKABANI Y, KOUSHANFAR F, and POTKONJAK M. Remote activation of ICs for piracy prevention and digital right management[C]. 2007 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, 2007: 674-677. doi: 10.1109/ICCAD.2007.4397343. CHAKRABORTY R S and BHUNIA S. HARPOON: An obfuscation-based SoC design methodology for hardware protection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(10): 1493-1502. doi: 10.1109/TCAD.2009.2028166. CHAKRABORTY R S and BHUNIA S. RTL hardware IP protection using key-based control and data flow obfuscation [C]. 23rd International Conference on VLSI Design, Bangalore, 2010: 405-410. doi: 10.1109/VLSI.Design.2010.54. ZHANG J, LIN Y, L Y, et al. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(6): 1137-1150. doi: 10.1109/TIFS.2015.2400413. KOUSHANFAR F. Provably secure active IC metering techniques for piracy avoidance and digital rights management[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(1): 51-63. doi: 10.1109/TIFS.2011. 2163307. CHANG Chiphong and POTKONJAK M. Secure System Design and Trustable Computing[M]. Switzerland: Springer International Publishing, 2016: 269-299. ZHANG J. A practical logic obfuscation technique for hardware security[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1193-1197. doi: 10.1109/TVLSI.2015.2437996. FISCHER V, DRUTAROVSKY M, CHODOWIEC P, et al. InvMixColumn decomposition and multilevel resource sharing in AES implementations[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13(8): 989-992. doi: 10.1109/TVLSI.2005.853606. WANG Y, YU H, SYLVESTER D, et al. Energy efficient in-memory AES encryption based on nonvolatile domain-wall nanowire[C]. Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, 2014: 1-4. doi: 10.7873/DATE.2014.196. -
計量
- 文章訪問數(shù): 998
- HTML全文瀏覽量: 148
- PDF下載量: 195
- 被引次數(shù): 0