一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

稀疏線性調(diào)頻步進(jìn)信號(hào)ISAR成像觀測(cè)矩陣自適應(yīng)優(yōu)化方法

陳怡君 李開(kāi)明 張群 羅迎

陳怡君, 李開(kāi)明, 張群, 羅迎. 稀疏線性調(diào)頻步進(jìn)信號(hào)ISAR成像觀測(cè)矩陣自適應(yīng)優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
引用本文: 陳怡君, 李開(kāi)明, 張群, 羅迎. 稀疏線性調(diào)頻步進(jìn)信號(hào)ISAR成像觀測(cè)矩陣自適應(yīng)優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
CHEN Yijun, LI Kaiming, ZHANG Qun, LUO Ying. Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals[J]. Journal of Electronics & Information Technology, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
Citation: CHEN Yijun, LI Kaiming, ZHANG Qun, LUO Ying. Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals[J]. Journal of Electronics & Information Technology, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554

稀疏線性調(diào)頻步進(jìn)信號(hào)ISAR成像觀測(cè)矩陣自適應(yīng)優(yōu)化方法

doi: 10.11999/JEIT170554
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61631019, 61471386),陜西省青年科技新星計(jì)劃(2016KJXX-49)

Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals

Funds: 

The National Natural Science Foundation of China (61631019, 61471386), The Youth Science and Technology New Star Program of Shaanxi Province (2016KJXX-49)

  • 摘要: 基于壓縮感知(CS)理論的稀疏線性調(diào)頻步進(jìn)信號(hào)(SFCS)逆合成孔徑雷達(dá)(ISAR)成像技術(shù)能夠從少量觀測(cè)數(shù)據(jù)中高概率重構(gòu)出目標(biāo)像,其中,觀測(cè)矩陣的優(yōu)化設(shè)計(jì)是提高成像質(zhì)量和減少觀測(cè)數(shù)據(jù)量的有效途徑。然而,現(xiàn)有的觀測(cè)矩陣優(yōu)化設(shè)計(jì)研究通常沒(méi)有考慮目標(biāo)特征信息的有效利用,對(duì)目標(biāo)的自適應(yīng)能力不足。因此,該文在充分利用目標(biāo)特征信息的基礎(chǔ)上,結(jié)合稀疏SFCS信號(hào)的實(shí)際物理觀測(cè)過(guò)程,提出一種ISAR成像觀測(cè)矩陣自適應(yīng)優(yōu)化方法。該方法首先建立參數(shù)化稀疏表征成像模型以解決稀疏SFCS信號(hào)多普勒敏感問(wèn)題,在此基礎(chǔ)上,以在達(dá)到成像質(zhì)量要求條件下使用最少觀測(cè)數(shù)據(jù)量獲得最優(yōu)成像結(jié)果為目標(biāo)對(duì)觀測(cè)矩陣進(jìn)行自適應(yīng)優(yōu)化設(shè)計(jì),最終能夠利用最少的數(shù)據(jù)量獲得滿意的目標(biāo)成像結(jié)果。仿真實(shí)驗(yàn)驗(yàn)證了該算法的有效性。
  • ZHU Feng, ZHANG Qun, LUO Ying, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. Science China Information Science, 2012, 55(8): 1910-1924. doi: 10.1007/s11432-012-4629-0.
    徐丹蕾, 杜蘭, 劉宏偉, 等. 基于復(fù)數(shù)因子分析模型的步進(jìn)頻數(shù)據(jù)壓縮感知[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 315-321. doi: 10.11999/JEIT140407.
    XU Danlei, DU Lan, LIU Hongwei, et al. Compressive sensing using complex factor analysis for stepped-frequency data[J]. Journal of Electronics Information Technology, 2015, 37(2): 315-321. doi: 10.11999/JEIT140407.
    呂明久, 李少東, 楊軍, 等. 基于隨機(jī)調(diào)頻步進(jìn)信號(hào)的高分辨率ISAR成像方法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 3129-3136. doi: 10.11999/JEIT160177.
    L Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency- stepped signal[J]. Journal of Electronics Information Technology, 2016, 38(12): 3129-3136. doi: 10.11999/ JEIT160177.
    ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702. doi: 10.1109/TSP.2007.900760.
    YAN Wenjie, WANG Qiang, and SHEN Yi. Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(5): 1073-1048. doi: 10.1109/tim.2014.2298271.
    劉杰平, 楊朝煜, 方杰, 等. 改進(jìn)的基于梯度投影的Gram觀測(cè)矩陣優(yōu)化算法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 44(8): 62-65. doi: 10.13245/j.hust.160813.
    LIU Jieping, YANG Chaoyu, FANG Jie, et al. Improved optimization algorithm of the Gram measurement matrix based on gradient projection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(8): 62-65. doi: 10.13245/j.hust.160813.
    ABATZOGLOU T J and GHEEN G O. Range, radical velocity, and acceleration MLE using radar LFM pulse train[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 34(4): 1070-1083. doi: 10.1109/7.722676.
    毛二可, 龍騰, 韓月秋. 頻率步進(jìn)雷達(dá)數(shù)字信號(hào)處理[J]. 航空學(xué)報(bào), 2001, 22(b06): 16-24. doi: 10.3321/j.issn:1000-6893. 2001.z1.003.
    MAO Erke, LONG Teng, and HAN Yueqiu. Digital signal processing of stepped frequency radar[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(b06): 16-24. doi: 10.3321/j.issn: 1000-6893.2001.z1.003.
    呂明久, 李少東, 楊軍, 等. 基于全局最小熵的隨機(jī)稀疏調(diào)頻步進(jìn)信號(hào)運(yùn)動(dòng)補(bǔ)償方法[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(8): 1744-1751. doi: 10.3969/j.issn.1001-506X.2016.08.06.
    L Mingjiu, LI Shaodong, YANG Jun, et al. Motion- compensation method based on global minimum entropy for random sparse stepped-frequency chirp signal[J]. Systems Engineering and Electronics, 2016, 38(8): 1744-1751. doi: 10.3969/j.issn.1001-506X.2016.08.06.
    王曉東. 基于步進(jìn)頻率的目標(biāo)成像與速度精確測(cè)量方法[J]. 四川兵工學(xué)報(bào), 2015, 36(5): 115-118. doi: 10.11809/ scbgxb2015.05.03.
    WANG Xiaodong. Target imaging and velocity measurement simultaneously algorithm based on step frequency waveforms[J]. Journal of Sichuan Ordnance, 2015, 36(5): 115-118. doi: 10.11809/scbgxb2015.05.03.
    XIA Guifen, SU Hongyan, and HUANG Peikang. Velocity compensation methods for LPRF modulated frequency stepped-frequency (MFSF) radar[J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 746-751. doi: 10.3969/j.issn.1004-4132.2010.05.005.
    CHEN Yichang, LI Gang, ZHANG Qun, et al. Motion compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 551-562. doi: 10.1109/TGRS. 2016.2611522.
    FAISAL Shabbir and PIOTR Omenzetter. Model updating using genetic algorithms with sequential niche technique[J]. Engineering Structures, 2016, 120: 166-182. doi: 10.1016/ j.engstruct.2016.04.028.
    DOWNEY Austin, HU Chao, and LAFLAMME Simon. Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool[J]. Structural Health Monitoring, 2017(10): 1475921717702537-1-1475921717702537-10, doi: 10.1177/ 1475921717702537.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1371
  • HTML全文瀏覽量:  160
  • PDF下載量:  373
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-11-08
  • 刊出日期:  2018-03-19

目錄

    /

    返回文章
    返回