一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

動態(tài)頻譜接入中基于最小貝葉斯風險的穩(wěn)健頻譜預測

陳曦 楊健

陳曦, 楊健. 動態(tài)頻譜接入中基于最小貝葉斯風險的穩(wěn)健頻譜預測[J]. 電子與信息學報, 2018, 40(3): 734-742. doi: 10.11999/JEIT170519
引用本文: 陳曦, 楊健. 動態(tài)頻譜接入中基于最小貝葉斯風險的穩(wěn)健頻譜預測[J]. 電子與信息學報, 2018, 40(3): 734-742. doi: 10.11999/JEIT170519
CHEN Xi, YANG Jian. Minimum Bayesian Risk Based Robust Spectrum Prediction in Dynamic Spectrum Access[J]. Journal of Electronics & Information Technology, 2018, 40(3): 734-742. doi: 10.11999/JEIT170519
Citation: CHEN Xi, YANG Jian. Minimum Bayesian Risk Based Robust Spectrum Prediction in Dynamic Spectrum Access[J]. Journal of Electronics & Information Technology, 2018, 40(3): 734-742. doi: 10.11999/JEIT170519

動態(tài)頻譜接入中基于最小貝葉斯風險的穩(wěn)健頻譜預測

doi: 10.11999/JEIT170519
基金項目: 

國家自然科學基金(61471395, 61471392, 61301161),江蘇省自然科學基金(BK20141070)

Minimum Bayesian Risk Based Robust Spectrum Prediction in Dynamic Spectrum Access

Funds: 

The National Natural Science Foundation of China (61471395, 61471392, 61301161), The Natural Science Foundation of Jiangsu Province (BK20141070)

  • 摘要: 針對頻譜感知錯誤累積造成頻譜預測性能惡化問題,該文提出一種基于最小貝葉斯風險的穩(wěn)健頻譜預測策略。分布擬合檢驗表明頻譜預測輸出服從正態(tài)分布,定義頻譜預測輸出的貝葉斯風險函數(shù),證明使貝葉斯風險函數(shù)最小的頻譜預測輸出判決門限將使頻譜預測的均方誤差最小,求得了使貝葉斯風險最小的最優(yōu)判決門限,構(gòu)建穩(wěn)健頻譜預測策略。仿真結(jié)果表明,與固定判決門限的神經(jīng)網(wǎng)絡頻譜預測相比,穩(wěn)健頻譜預測策略改進了頻譜感知錯誤下的頻譜預測性能,改善了非授權(quán)用戶的動態(tài)頻譜接入性能。
  • NING Guoqin and NINTANAVONGSA P. Time prediction based spectrum usage detection in centralized cognitive radio networks[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2012: 300-305. doi: 10.1109/WCNC.2012.6214320.
    WANG Tan, LI Gen, and DING Jiaxin. 5G Spectrum: Is China ready?[J]. IEEE Communications Magazine, 2015, 53(7): 58-65. doi: 10.1109/MCOM.2015.7158266.
    SONG Yi and XIE Jiang. ProSpect: A proactive spectrum handoff framework for cognitive radio ad hoc networks without common control channel[J]. IEEE Transactions on Mobile Computing, 2012, 11(7): 1127-1139. doi: 10.1109/ TMC.2011.140.
    GUAN Quansheng, RICHARD Y F, and JIANG Shengming. Prediction-based topology control and routing in cognitive radio mobile Ad hoc networks[J]. IEEE Transactions on Vehicular Technology, 2011, 59(9): 4443-4452. doi: 10.1109/ TVT.2010.2069105
    GHOSH A and SARKAR S. Quality-sensitive price competition in secondary market spectrum oligopoly-single location game[J]. IEEE/ACM Transactions on Networking, 2016, 24(3): 1894-1907. doi: 10.1109/TNET.2015.2440422.
    GHOSH A, SARKAR S, and BERRY R. The value of side information in secondary spectrum markets[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 6-19. doi: 10.1109/JSAC.2016.2632579.
    KUMAR A, SINGH S, and ZHENG Haitao. Reliable open spectrum communications through proactive spectrum access[C]. 2006 International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, American, 2006: 5. doi: 10.1145/1234388.1234393.
    ELTOM H, KANDEEPAN S, LIANG Yingchang, et al. HMM based cooperative spectrum occupancy prediction using hard fusion[C]. 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, 2016: 669-675. doi: 10.1109/ICCW.2016.7503864.
    TUMULURU V, WANG Ping, and NIYATO D. Channel status prediction for cognitive radio networks[J]. Wireless Communications and Mobile Computing, 2012, 12(10): 862-874. doi: 10.1002/wcm.1017.
    SU Jinzhao and WU Wei. Wireless spectrum prediction model based on time series analysis method[C]. 2009 ACM workshop on Cognitive radio networks, Beijing, China (CoRoNET), Beijing, China, 2009: 61-66. doi: 10.1145/ 1614235.1614250.
    WEN Zheng, LUO Tian, and WANG Xiang. Autoregressive spectrum holes prediction model for cognitive radio systems[C]. 2008 IEEE Communications Workshop (ICC), Beijing, China, 2008: 154-157. doi: 10.1109/ICCW.2008.34.
    TANG Mengyun, DING Guoru, WU Qihui, et al. A joint tensor completion and prediction scheme for multi- dimensional spectrum map construction[J]. IEEE Access, 2016(4): 8044-8052. doi: 10.1109/ACCESS.2016.2627243.
    RAZALI N M and WAH Y B. Power comparisons of shapiro- wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests[J]. Journal of Statistical Modeling and Analytics, 2011, 2(1): 21-33.
    BAO Yong. On sample skewness and kurtosis[J]. Econometric Reviews, 2013, 32(4): 415-448. doi: 10.1080/07474938.2012. 690665.
    MASONTA M, MZYECE M, and NTLATLAPA N. Spectrum decision in cognitive radio networks: A survey[J]. IEEE Communications Surveys Tutorials, 2013, 15(3): 1088-1107. doi: 10.1109/SURV.2012.111412.00160.
  • 加載中
計量
  • 文章訪問數(shù):  1281
  • HTML全文瀏覽量:  153
  • PDF下載量:  185
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-11-29
  • 刊出日期:  2018-03-19

目錄

    /

    返回文章
    返回