帶有上行數(shù)據(jù)幀聚合的光無(wú)線融合接入網(wǎng)絡(luò)節(jié)能機(jī)制
doi: 10.11999/JEIT170508
國(guó)家自然科學(xué)基金(61771082),重慶市高校創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃資助項(xiàng)目(CXTDX201601020),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1401126)
Energy-saving Mechanism of Integrated Fiber-wireless Access Network with Uplink Data Frame Aggregation
The National Natural Science Foundation of China (61771082), The Chongqing Funded Project of Chongqing University Innovation Team Construction (CXTDX201601020), The Science and Technology Research Project of Chongqing Municipal Education Commission (KJ1401126)
-
摘要: 光無(wú)線融合接入網(wǎng)存在光網(wǎng)絡(luò)單元利用率低,數(shù)據(jù)傳輸過(guò)程中控制開(kāi)銷較大的問(wèn)題。該文提出一種帶有上行數(shù)據(jù)幀聚合的節(jié)能機(jī)制,建立M/G/1模型分析數(shù)據(jù)幀在無(wú)線域節(jié)點(diǎn)及光域節(jié)點(diǎn)的隊(duì)列時(shí)延,結(jié)合不同優(yōu)先級(jí)業(yè)務(wù)的最大容忍時(shí)延,推導(dǎo)各優(yōu)先級(jí)聚合幀在不同網(wǎng)絡(luò)狀態(tài)下的最佳長(zhǎng)度,進(jìn)而根據(jù)所得到的最佳幀長(zhǎng)對(duì)光域節(jié)點(diǎn)進(jìn)行休眠調(diào)度,在保障業(yè)務(wù)時(shí)延的前提下,盡可能地延長(zhǎng)節(jié)點(diǎn)休眠時(shí)間長(zhǎng)度,提高網(wǎng)絡(luò)能量效率。仿真結(jié)果表明,所提方法在有效降低整個(gè)網(wǎng)絡(luò)能耗的同時(shí)能夠保證業(yè)務(wù)的時(shí)延性能。
-
關(guān)鍵詞:
- 光無(wú)線融合接入網(wǎng)絡(luò) /
- 幀聚合 /
- 節(jié)能 /
- 節(jié)點(diǎn)休眠
Abstract: Integrated Fiber-Wireless (FiWi) access network has the problems of low utilization rate of optical network unit and large control overhead during data transmission. In this paper, an energy saving mechanism with uplink data frame aggregation is proposed, the M/G/1 model is used to analyze the queue delay of the data frame in the wireless domain node and the optical domain node, by combining with the maximum tolerable delay of different priority, the optimal length of the aggregation frame is deduced in different network conditions. And then according to the optimal frame length to perform sleep scheduling for optical domain nodes, on the premise of guaranteeing the service delay, as much as possible to extend the length of node sleep time, and then the network energy efficiency is improved. The simulation results show that the proposed method can effectively reduce the energy consumption of the whole network and guarantee the delay performance. -
WU Dapeng, ZHANG Puning, WANG Honggang, et al. Node service ability aware packet forwarding mechanism in intermittently connected wireless networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8169-8181. doi: 10.1109/TWC.2016.2613077. VAN D P, RIMAL B P, ANDREEV S, et al. Machine- to-Machine communications over FiWi enhanced LTE Networks: A power-saving framework and end-to-end performance[J]. Journal of Lightwave Technology, 2016, 34(4): 1062-1071. doi: 10.1109/JLT.2015.2510358. BEYRANVAND H, LEVESQUE M, MAIER M, et al. Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 1-18. doi: 10.1109/TNET.2016.2599780. Van D P, RIMAL B P, MAIER M, et al. ECO-FiWi: An energy conservation scheme for integrated fiber-wireless access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 3979-3994. doi: 10.1109/TWC. 2016.2531694. FADLULLAH Z M, NISHIYAMA H, KATO N, et al. Smart FiWi networks: Challenges and solutions for QoS and green communications[J]. IEEE Intelligent Systems, 2013, 28(2): 86-91. doi: 10.1109/MIS.2013.46. LIU Jiajia, GUO Hongzhi, NISHIYAMA H, et al. New perspectives on future smart FiWi networks: scalability, reliability and energy efficiency[J]. IEEE Communications Surveys Tutorials, 2016, 18(2): 1045-1072. doi: 10.1109/ COMST.2015.2500960. LIU Jiaia, GUO Hongzhi, FADLULLAH Z M, et al. Energy consumption minimization for FiWi enhanced LTE-A HetNets with UE connection constraint[J]. IEEE Communications Magazine, 2016, 54(11): 56-62. doi: 10.1109 /MCOM.2016.1600169CM. HAN Pengchao, GUO Lei, LIU Yejun, et al. Joint wireless and optical power states scheduling for green multi-radio fiber-wireless access network[J]. Journal of Lightwave Technology, 2016, 34(11): 2610-2623. doi: 10.1109/JLT.2016. 2529644. DHAINI A R, HO P H, SHEN Gangxiang, et al. Energy efficiency in TDMA-based next-generation passive optical access networks[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 850-863. doi: 10.1109/TNET.2013.2259596. GE Zhihui, LIANG Anzhong, and LI Taoshen. EEFA: energy efciency frame aggregation scheduling algorithm for IEEE802.11n wireless network[J]. China Communications, 2014, 11(3): 19-26. doi: 10.1109/CC.2014.6825255. ALASLANI M, SHOWAIL A, and SHIHADA B. Green frame aggregation scheme for Wi-Fi networks[C]. IEEE International Conference on High Performance Switching and Routing, Budapest, Hungary, 2015: 1-6. doi: 10.1109/HPSR. 2015.7483076. JENO S and LEE J. Adaptive frame aggregation scheme for energy efficiency in WLAN[C]. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 2011: 463-464. doi: 10.1109/ICCE.2011.5722685. GHAZISAIDI N and MAIER M. Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks[J]. IEEE Communications Magazine, 2011, 49(9): 64-73. doi: 10.1109/MCOM.2011.6011735. ZHOU Xiaoli and BOUKERCHE A. AFLAS: An adaptive frame length aggregation scheme in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 855-867. doi: 10.1109/TVT.2016.2533160. HABIBI D, AHMAD I, and AHMAD M. Green wireless- optical broadband access network: Energy and quality-of- service considerations[J]. Journal of Optical Communications Networking, 2015, 7(7): 669-680. doi: 10.1364/JOCN.7. 000669. LIU Yejun, GUO Lei, ZHANG Lincong, et al. A new integrated energy-saving scheme in green fiber-wireless(FiWi) access network[J]. Science China Information Sciences, 2014, 57(6): 1-15. doi: 10.1007/s11432-013-4958-7. GONG Xiaoxue, HOU Weigang, GUO Lei, et al. Dynamic energy-saving algorithm in green hybrid wireless-optical broadband access network[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(14): 1874-1881. doi: 10.1016/j.ijleo.2012.05.030. LI Chengjun, GUO Wei, HU Weisheng, et al. Energy-efficient dynamic bandwidth allocation for EPON networks with sleep mode ONUs[J]. Optical Switching Networking, 2015, 15(C): 121-133. doi: 10.1016/j.osn.2014.07.003. MANGOLD S, CHOI S, HIERTZ G R, et al. Analysis of IEEE 802.11e for QoS support in wireless LANs[J]. IEEE Wireless Communications, 2003, 10(6): 40-50. doi: 10.1109/ MWC.2003.1265851. -
計(jì)量
- 文章訪問(wèn)數(shù): 1230
- HTML全文瀏覽量: 126
- PDF下載量: 182
- 被引次數(shù): 0