針對(duì)視頻運(yùn)動(dòng)補(bǔ)償幀率提升篡改的主動(dòng)混噪取證算法
doi: 10.11999/JEIT170502
-
2.
(信陽師范學(xué)院計(jì)算機(jī)與信息技術(shù)學(xué)院 信陽 464000)
-
3.
(南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003)
國家自然科學(xué)基金(61501393)
Active Noised-mixed Forensics Algorithm for Tampering of Video Motion-compensated Frame Rate Up-conversion
-
2.
(School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China)
-
3.
(College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
The National Natural Science Foundation of China (61501393)
-
摘要: 運(yùn)動(dòng)補(bǔ)償幀率提升(MC-FRUC)是常見的視頻時(shí)域篡改手段。現(xiàn)有方法依靠被動(dòng)分析視頻統(tǒng)計(jì)特征發(fā)現(xiàn)MC-FRUC篡改,然而,視頻統(tǒng)計(jì)特性的非平穩(wěn)性影響了取證性能的穩(wěn)定性。該文提出一種主動(dòng)混噪取證算法,通過預(yù)先混入統(tǒng)計(jì)特性已知的高斯白噪聲,提高M(jìn)C-FRUC取證的準(zhǔn)確度。首先,利用偽隨機(jī)序列生成高斯白噪聲,加入原始視頻序列。接著,由小波系數(shù)的絕對(duì)中位差預(yù)測(cè)各視頻幀中混入高斯噪聲的標(biāo)準(zhǔn)差。最后,檢測(cè)高斯噪聲標(biāo)準(zhǔn)差的時(shí)域變化周期性,通過硬閾值判決,自動(dòng)甄別MC-FRUC篡改。實(shí)驗(yàn)結(jié)果表明,針對(duì)不同的MC-FRUC偽造方法,提出算法均表現(xiàn)出良好的取證性能,尤其是當(dāng)采用去噪、壓縮等操作后處理視頻后,提出算法仍能確保較高的檢測(cè)準(zhǔn)確度。
-
關(guān)鍵詞:
- 運(yùn)動(dòng)補(bǔ)償幀率提升 /
- 主動(dòng)取證 /
- 高斯噪聲 /
- 絕對(duì)中位差 /
- 周期性檢測(cè)
Abstract: Motion-Compensated Frame Rate Up-Conversion (MC-FRUC) is one of the common temporal-domain tampering methods of video. The existing methods recognize MC-FRUC tampering by passively analyzing statistical characteristics of video; however, the non-stationarity in statistics of video affects the stability of forensics. This paper proposes an active noise-mixed forensics algorithm. First, white Gaussian noises are produced using a pseudorandom sequence, and these noises are added into the original video sequence. Second, based on the median absolute deviation of wavelet coefficients, the standard deviation of mixed Gaussian noises in each video frame is estimated. Last, the periodicity of standard deviation varying in time domain is detected, and MC-FRUC tampering with a hard-thresholding operation is automatically identified. Experimental results indicate that the proposed algorithm presents better performance of forensics for various MC-FRUC methods, and can still ensure high detection accuracy especially after videos are denoised or compressed. -
TSAI T H, SHI A T, and HUANG K T. Accurate frame rate up-conversion for advanced visual quality[J]. IEEE Transactions on Broadcasting, 2016, 62(2): 426-435. doi: 10.1109/TBC.2016.2550764. BIAN S, LUO W, and HUANG J. Exposing fake bit rate videos and estimating original bit rates[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(12): 2144-2154. doi: 10.1109/TCSVT.2014.2334031. BIAN S, LUO W, and HUANG J. Detecting video frame-rate up-conversion based on periodic properties of inter-frame similarity[J]. Multimedia Tools and Applications, 2014, 72(1): 437-451. doi: 10.1007/s11042-013-1364-5. WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861. YANG J, HUANG T, and SU L. Using similarity analysis to detect frame duplication forgery in videos[J]. Multimedia Tools and Applications, 2016, 75(4): 1793-1811. doi: 10.1007/ s11042-014-2374-7. CHOI D, SONG W, CHOI H, et al. MAP-based motion refinement algorithm for block-based motion-compensated frame interpolation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(10): 1789-1804. doi: 10.1109/TCSVT.2015.2473275. BESTAGINI P, BATTALIA S, MILANI S, et al. Detection of temporal interpolation in video sequences[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013: 3033-3037. doi: 10.1109/ICASSP.2013.6638215 YAO Y, YANG G, SUN X, et al. Detecting video frame-rate up-conversion based on periodic properties of edge- intensity[J]. Journal of Information Security Applications, 2016, 26(3): 8399-8421. doi: 10.1007/S11042-016-3468-1. XIA M, YANG G, LI L, et al. Detecting video frame rate up-conversion based on frame-level analysis of average texture variation[J]. Multimedia Tools Applications, 2017, 76(6): 8399-8421. doi: 10.1007/S11042-016-3468-1. DING X, YANG G, LI R, et al. Identification of motion- compensated frame rate up-conversion based on residual signal[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, pp(99): 1-1. doi: 10.1109/TCSVT. 2017.2676162. DE H G, BIEZEN P W A C, HUIJGEN H, et al. True-motion estimation with 3-D recursive search block matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1993, 3(5): 368-379. doi: 10.1109/76.246088. YOO D G, KANG S J, and KIM Y H. Direction-select motion estimation for motion-compensated frame rate up- conversion[J]. Journal of Display Technology, 2013, 9(10): 840-850. doi: 10.1109/JDT.2013.2263374. LIU H, XIONG R, ZHAO D, et al. Multiple hypotheses bayesian frame rate up-conversion by adaptive fusion of motion-compensated interpolations[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(8): 1188-1198. doi: 10.1109/TCSVT.2012.2197081. JEONG S G, LEE C, and KIM C S. Motion-compensated frame interpolation based on multihypothesis motion estimation and texture optimization[J]. IEEE Transactions on Image Processing, 2013, 22(11): 4497-4509. doi: 10.1109/ TIP.2013.2274731. LI R, LIU Z, ZHANG Y, et al. Noise-level estimation based detection of motion-compensated frame interpolation in video sequences[J]. Multimedia Tools Applications, 2017, 76(10): 1-26. doi: 10.1007/s11042-016-4268-3. LEIGH A, WONG A, CLAUSI D A, et al. Comprehensive analysis on the effects of noise estimation strategies on image noise artifact suppression performance[C]. 2011 IEEE International Symposium on Multimedia, Washington, DC, USA, 2011: 97-104. -
計(jì)量
- 文章訪問數(shù): 1292
- HTML全文瀏覽量: 137
- PDF下載量: 233
- 被引次數(shù): 0