應(yīng)用改進(jìn)的主要特征基函數(shù)快速計(jì)算目標(biāo)寬角度RCS
doi: 10.11999/JEIT170499
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61401003),安徽省教育廳自然科學(xué)基金(KJ2016A669)
Fast Calculation of Wide-angel RCS of Objects Using Improved Primary Characteristic Basis Functions
Funds:
The National Natural Science Foundation of China (61401003), The Natural Science Foundation of Anhui Provincial Education Department (KJ2016A669)
-
摘要: 特征基函數(shù)法是分析目標(biāo)寬角度電磁散射特性的有效方法之一,但在構(gòu)造特征基函數(shù)時(shí),設(shè)置的入射波激勵(lì)包含大量的冗余信息,大大降低了特征基函數(shù)的構(gòu)造效率;另外在分析復(fù)雜目標(biāo)時(shí),在增加激勵(lì)數(shù)目的情況下,僅應(yīng)用主要特征基函數(shù)并不能顯著提高計(jì)算精度。針對(duì)這些問(wèn)題,該文對(duì)特征基函數(shù)構(gòu)造方法進(jìn)行改進(jìn),首先采用奇異值分解技術(shù)對(duì)激勵(lì)矩陣進(jìn)行壓縮去除冗余信息,減少求解矩陣方程的次數(shù);其次充分考慮子域之間的互耦作用,將主要特征基函數(shù)與次要特征基函數(shù)融合,得到改進(jìn)的主要特征基函數(shù)。數(shù)值計(jì)算結(jié)果表明:與傳統(tǒng)方法相比,該方法具有更高的計(jì)算效率和計(jì)算精度。
-
關(guān)鍵詞:
- 寬角度RCS /
- 特征基函數(shù)法 /
- 特征基函數(shù) /
- 奇異值分解
Abstract: Characteristic basis function method is one of the effective methods to analyze wide-angle electromagnetic scattering characteristics of objects. However, the incident wave excitations used to construct the Characteristic Basis Functions (CBFs) contain large amount of redundant information, which greatly reduces the construction efficiency of the CBFs. Moreover, when the complex target is analyzed, the calculation accuracy can not be significantly improved only using the Primary CBFs (PCBFs) when the number of excitations is increased. To solve these problems, an improved CBFs construction method is presented in this paper. Firstly, the Singular Value Decomposition (SVD) technique is used to effectively compress the excitation matrix to remove the redundant information, which in turn reduces the number of solving the matrix equation. Then, the mutual interaction among subdomains is fully considered, the Improved PCBFs (IPCBFs) are obtained by merging the PCBFs and the Secondary CBFs (SCBFs). The numerical results show that the proposed method has higher computational efficiency and computational accuracy than the traditional method. -
HARRINGTON R F. Field Computation by Moment Method[M]. New York: Macmillan, 1968: 22-57. SONG J M, LU C C, and CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10): 1488-1493. doi: 10.1109/8.633855. 陳新蕾, 鄧小喬, 李茁, 等. 金屬介質(zhì)混合目標(biāo)散射分析的快速偶極子法[J]. 電子與信息學(xué)報(bào), 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398. CHEN Xinlei, DENG Xiaoqiao, LI Zhuo, et al. Electromagnetic scattering by mixed conducting and dielectric objects analysis using fast dipole method[J]. Journal of Electronics Information Technology, 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398. 王興, 龔書喜, 關(guān)瑩, 等. AIM 結(jié)合漸近波形估計(jì)技術(shù)快速分析目標(biāo)寬帶電磁散射特性[J]. 電子與信息學(xué)報(bào), 2011, 33(8): 1975-1980. doi: 10.3724/SP.J.1146.2010.01404. WANG Xing, GONG Shuxi, GUAN Ying, et al. Fast analysis of electromagnetic scattering of targets over a broad frequency band using AIM with asymptotic waveform evaluation[J]. Journal of Electronics Information Technology, 2011, 33(8): 1975-1980. doi: 10.3724/SP.J.1146. 2010.01404. ZHAO K, VOUVAKIS M N, and LEE J F. The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 763-773. doi: 10.1109/TEMC.2005.857898. LI L W, HE X J, WANG Y, et al. Electromagnetic scattering of the carbon nanotubes excited by an electric line source[J]. Chinese Physic B, 2012, 21(1): 014212-1-014212-5. doi: 10.1088/1674-1056/21/1/014212. LIU Z, CHEN R, CHEN J, et al. Using adaptive cross approximation for efficient calculation of monostatic scattering with multiple incident angles[J]. Applied Computational Electromagnetics Society Journal, 2011, 26(4): 325-333. 陳明生, 王時(shí)文, 馬韜, 等. 基于壓縮感知的目標(biāo)頻空電磁散射特性快速分析[J]. 物理學(xué)報(bào), 2014, 63(17): 170301-1-170301-5. doi: 10.7498/aps.63.170301. CHEN Mingsheng, WANG Shiwen, MA Tao, et al. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing [J]. Acta Physica Sinica, 2014, 63(17): 170301-1-170301-5. doi: 10.7498/aps.63.170301. 曹欣遠(yuǎn), 陳明生, 孔勐, 等. 自適應(yīng)交叉近似結(jié)合壓縮感知快速求解電大目標(biāo)寬角度電磁散射問(wèn)題[J]. 中國(guó)科技大學(xué)學(xué)報(bào), 2015, 45(4): 302-307. doi: 10.3969/j.issn.0253-2778.2015.04. 007. CAO Xinyuan, CHEN Mingsheng, KONG Meng, et al. Application of adaptive cross approximation combined with compressed sensing to fast solution of electromagnetic scattering problems of electrically large objects over wide angles[J]. Journal of University of Science and Technology of China, 2015, 45(4): 302-307. doi: 10.3969/j.issn.0253-2778. 2015.04.007. LUCENTE E, MONORCHIO A, and MITTRA R. An iteration-free MOM approach based on excitation independent characteristic basis function for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 999-1007. doi: 10.1109/TAP.2008.919166. 侯兆國(guó), 王超, 董純柱, 等. 基于PO和EEC的特征基函數(shù)快速構(gòu)造方法[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(7): 1458-1461. doi: 10.3969/j.issn.1001-506X.2011.07.06. HOU Zhaoguo, WANG Chao, DONG Chunzhu, et al. Fast characteristic basis functions construction procedure based on the PO and EEC method[J]. Systems Engineering and Electronics, 2011, 33(7): 1458-1461. doi: 10.3969/j.issn.1001- 506X.2011.07.06. DING J, LI J F, and ZHANG T. Fast direct solution of characteristic basis function method using ACA-based LU decomposition[J]. IEICE Electronics Express, 2016, 13(7): 1-9. doi: 10.1587/elex.13.20160176. FENNI I, ROUSSEL H, DARCES M, et al. Efficiency enhancement of the characteristic basis function method form modeling forest scattering using the adaptive cross approximation algorithm[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4539-4544. doi: 10.1109/TAP. 2016.2593872. CHEN X L,GU C Q, LI Z, et al. Accelerated direct solution of electromagnetic scattering via characteristic basis function method with sherman-morrison-woodbury formula-based algorithm[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4482-4486. doi: 10.1109/TAP.2016. 2587743. SU Y, LI C, MITTRA R, et al. Multi-level characteristic basis function method for analysis of scattering from objects embedded in multi-layered media[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(1): 47-56. doi: 10.1080/09205071.2016.1250678. KONNO K and CHEN Q. The numerical analysis of an antenna near a dielectric object using the higher-order characteristic basis function method combined with a volume integral equation[J]. IEICE Transactions on Communications, 2014, E97-B(10): 2066-2073. doi: 10.1587/transcom.E97.B. 2066. WANG Z G, SUN Y F, and WANG G H. Analysis of electromagnetic scattering from perfect electric conducting targets using improved characteristic basis function method and fast dipole method[J]. Journal of Electromagnetic Waves and Applications, 2014, 28(7): 893-902. doi: 10.1080/ 09205071.2014.895425. TANAKA T, INASAWA Y, NISHIOKA Y, et al. Improved primary characteristic basic function method for monostatic radar cross section analysis of specific coordinate plane[J]. IEICE Transactions on Electronics, 2016, E99-C(1): 28-35. doi: 10.1587/transele.E99.C.28. -
計(jì)量
- 文章訪問(wèn)數(shù): 1178
- HTML全文瀏覽量: 145
- PDF下載量: 179
- 被引次數(shù): 0