基于Hess矩陣的多聚焦圖像融合方法
doi: 10.11999/JEIT170497
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61572092, U1401252),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC1000307-3)
Multi-focus Image Fusion Based on Hess Matrix
Funds:
The National Natural Science Foundation of China (61572092, U1401252), The National Science and Technology Major Project (2016YFC1000307-3)
-
摘要: 該文提出了一種基于Hess矩陣的多聚焦圖像融合方法。該方法利用多尺度下的Hess矩陣檢測(cè)特征和背景區(qū)域,并在此基礎(chǔ)上,將源圖像分成特征區(qū)域與非特征區(qū)域,分別采用不同的融合策略生成決策圖;然后通過(guò)結(jié)合不同部分的決策圖,得到初始決策圖;最后采用后處理方法對(duì)初始決策圖進(jìn)行精化,得到最終的融合圖像。為了提高融合效果,該文還提出了一種基于多尺度Hess矩陣的聚焦評(píng)價(jià)方法。同時(shí)引入積分圖像進(jìn)行快速計(jì)算,以滿(mǎn)足實(shí)時(shí)性要求。實(shí)驗(yàn)結(jié)果表明,該方法在主觀視覺(jué)感知和客觀評(píng)價(jià)指標(biāo)方面都要略?xún)?yōu)于現(xiàn)有的方法。Abstract: This paper proposes a Hess (also known as Hessian) matrix-based multi-focus image fusion method. In this method, multi-scale Hess matrix is utilized to detect feature and background regions. On this basis, source images are split into two different parts, and different fusion strategies are applied to generating decision map respectively. By combining decision maps in different parts, an initial decision map is obtained, and then the initial decision map is refined with post-processing method. To improve the performance of the fusion method, a new focus measure is proposed based on multi-scale Hess matrix for both feature and background regions. Integral images are also introduced for fast computation to meet the real-time application requirements. Experimental results demonstrate that the proposed method is competitive with or even outperforms the state-of-the-art methods in terms of both subjective visual perception and objective evaluation metrics.
-
Key words:
- Multi-focus image fusion /
- Hess matrix /
- Integral images
-
LI H, LI X, YU Z, et al. Multifocus image fusion by combining with mixed-order structure tensors and multiscale neighborhood[J]. Information Sciences An International Journal, 2016, s349(C): 25-49. doi: 10.1016/j.ins.2016.02.030. BAI X, ZHANG Y, ZHOU F, et al. Quadtree-based multi- focus image fusion using a weighted focus-measure[J]. Information Fusion, 2015, 22: 105-118. doi: 10.1016/j.inffus. 2014.05.003. PETROVIC V S and XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237. doi: 10.1109/TIP.2004. 823821. LEWIS J J, OCALLAGHAN R J, NIKOLOV S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi: 10.1016/j.inffus. 2005.09.006. LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi: 10.1016/j.inffus.2016.05.004. LIU Y, LIU S, and WANG Z. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23(C): 139-155. doi: 10.1016/j.inffus.2014.05.004. LI S, KANG X, and HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013.2244222. LI S, KANG X, HU J, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147-162. doi: 10.1016/j.inffus.2011.07.001. ZHOU Z, LI S, and WANG B. Multi-scale weighted gradient- based fusion for multi-focus images[J]. Information Fusion, 2014, 20(1): 60-72. doi: 10.1016/j.inffus.2013.11.005. WANG Z, MA Y, and GU J. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003-2016. doi: 10.1016/j.patcog.2010.01.011. LOWE and DAVID G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. BAY H, ESS A, and TUYTELAARS T. Speeded-up robust features[J]. Computer Vision Image Understanding, 2008, 110(3): 404-417. ZHANG Y, BAI X, and WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81-101. doi: 10.1016/j.inffus.2016.09.006. VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, Hawaii, 2001, (I): 511-518. ZHANG Q and LEVINE M D. Robust multi-focus image fusion using multi-task sparse representation and spatial context[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2045-2058. doi: 10.1109/TIP.2016.2524212. ZHANG B, LU X, PEI H, et al. Multi-focus image fusion algorithm based on focused region extraction[J]. Neurocomputing, 2016, 174(PB): 733-748. doi: 10.1016/j.ins. 2016.02.030. LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. doi: 10.1016/j.inffus.2016.12.001. -
計(jì)量
- 文章訪問(wèn)數(shù): 1433
- HTML全文瀏覽量: 177
- PDF下載量: 355
- 被引次數(shù): 0