一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于Hess矩陣的多聚焦圖像融合方法

肖斌 唐翰 徐韻秋 李偉生

肖斌, 唐翰, 徐韻秋, 李偉生. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
引用本文: 肖斌, 唐翰, 徐韻秋, 李偉生. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
XIAO Bin, TANG Han, XU Yunqiu, LI Weisheng. Multi-focus Image Fusion Based on Hess Matrix[J]. Journal of Electronics & Information Technology, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
Citation: XIAO Bin, TANG Han, XU Yunqiu, LI Weisheng. Multi-focus Image Fusion Based on Hess Matrix[J]. Journal of Electronics & Information Technology, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497

基于Hess矩陣的多聚焦圖像融合方法

doi: 10.11999/JEIT170497
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61572092, U1401252),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC1000307-3)

Multi-focus Image Fusion Based on Hess Matrix

Funds: 

The National Natural Science Foundation of China (61572092, U1401252), The National Science and Technology Major Project (2016YFC1000307-3)

  • 摘要: 該文提出了一種基于Hess矩陣的多聚焦圖像融合方法。該方法利用多尺度下的Hess矩陣檢測(cè)特征和背景區(qū)域,并在此基礎(chǔ)上,將源圖像分成特征區(qū)域與非特征區(qū)域,分別采用不同的融合策略生成決策圖;然后通過(guò)結(jié)合不同部分的決策圖,得到初始決策圖;最后采用后處理方法對(duì)初始決策圖進(jìn)行精化,得到最終的融合圖像。為了提高融合效果,該文還提出了一種基于多尺度Hess矩陣的聚焦評(píng)價(jià)方法。同時(shí)引入積分圖像進(jìn)行快速計(jì)算,以滿(mǎn)足實(shí)時(shí)性要求。實(shí)驗(yàn)結(jié)果表明,該方法在主觀視覺(jué)感知和客觀評(píng)價(jià)指標(biāo)方面都要略?xún)?yōu)于現(xiàn)有的方法。
  • LI H, LI X, YU Z, et al. Multifocus image fusion by combining with mixed-order structure tensors and multiscale neighborhood[J]. Information Sciences An International Journal, 2016, s349(C): 25-49. doi: 10.1016/j.ins.2016.02.030.
    BAI X, ZHANG Y, ZHOU F, et al. Quadtree-based multi- focus image fusion using a weighted focus-measure[J]. Information Fusion, 2015, 22: 105-118. doi: 10.1016/j.inffus. 2014.05.003.
    PETROVIC V S and XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237. doi: 10.1109/TIP.2004. 823821.
    LEWIS J J, OCALLAGHAN R J, NIKOLOV S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi: 10.1016/j.inffus. 2005.09.006.
    LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi: 10.1016/j.inffus.2016.05.004.
    LIU Y, LIU S, and WANG Z. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23(C): 139-155. doi: 10.1016/j.inffus.2014.05.004.
    LI S, KANG X, and HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013.2244222.
    LI S, KANG X, HU J, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147-162. doi: 10.1016/j.inffus.2011.07.001.
    ZHOU Z, LI S, and WANG B. Multi-scale weighted gradient- based fusion for multi-focus images[J]. Information Fusion, 2014, 20(1): 60-72. doi: 10.1016/j.inffus.2013.11.005.
    WANG Z, MA Y, and GU J. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003-2016. doi: 10.1016/j.patcog.2010.01.011.
    LOWE and DAVID G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    BAY H, ESS A, and TUYTELAARS T. Speeded-up robust features[J]. Computer Vision Image Understanding, 2008, 110(3): 404-417.
    ZHANG Y, BAI X, and WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81-101. doi: 10.1016/j.inffus.2016.09.006.
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, Hawaii, 2001, (I): 511-518.
    ZHANG Q and LEVINE M D. Robust multi-focus image fusion using multi-task sparse representation and spatial context[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2045-2058. doi: 10.1109/TIP.2016.2524212.
    ZHANG B, LU X, PEI H, et al. Multi-focus image fusion algorithm based on focused region extraction[J]. Neurocomputing, 2016, 174(PB): 733-748. doi: 10.1016/j.ins. 2016.02.030.
    LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. doi: 10.1016/j.inffus.2016.12.001.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1433
  • HTML全文瀏覽量:  177
  • PDF下載量:  355
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-24
  • 修回日期:  2017-10-18
  • 刊出日期:  2018-02-19

目錄

    /

    返回文章
    返回