基于安全保護域的增強型多點協(xié)作傳輸機制
doi: 10.11999/JEIT170478
-
1.
(國家數(shù)字交換系統(tǒng)工程技術(shù)研究中心 鄭州 450002)
河南省科技攻關(guān)計劃(152102210013),國家 863 計劃項目(2015AA01A708),國家自然科學基金(61701538, 61171108, 61471396)
An Enhanced Coordinated Multipoint Transmission Policy Based on Secrecy Guard Zone
-
1.
(National Digital Switching System Engineering &
The Program for Science and Technology Development of Henan Province (152102210013), The National 863 Program of China (2015AA01A708), The National Natural Science Foundation of China (61701538, 61171108, 61471396)
-
摘要: 現(xiàn)有針對異構(gòu)蜂窩網(wǎng)多點協(xié)作安全傳輸?shù)难芯考杏谠鰪娭餍诺蕾|(zhì)量以提升安全性,然而多基站協(xié)作又使基站和竊聽者之間的平均距離變近,網(wǎng)絡(luò)的安全性受限于距離協(xié)作基站較近的竊聽者。針對該問題,該文提出一種基于安全保護域的增強型多點協(xié)作傳輸機制。然后,理論分析了用戶的連接中斷概率、安全中斷概率以及安全吞吐量。進一步,以最大化安全吞吐量為目標,優(yōu)化協(xié)作微基站的發(fā)射功率以及有用信息功率分配比例系數(shù)。仿真結(jié)果表明,相比于傳統(tǒng)的多點協(xié)作安全傳輸機制,在存在嚴重安全威脅(竊聽者密度較大)的場景下,所提機制可以實現(xiàn)非零系統(tǒng)安全吞吐量;在存在較小安全威脅(竊聽者密度較小)的場景下,系統(tǒng)安全吞吐量最大可提升76.1%。
-
關(guān)鍵詞:
- 異構(gòu)蜂窩網(wǎng) /
- 物理層安全 /
- 安全保護域 /
- 多點協(xié)作傳輸機制 /
- 人工噪聲
Abstract: The existing researches on Coordinated Multi-Point transmission (CoMP) secure transmission in heterogeneous cellular networks mainly focus on improving the quality of the main channel to enhance security. However, CoMP also makes the average distance between base station and eavesdropper close which makes the security threat more severe. Based on secrecy guard zone, an enhanced CoMP policy is proposed in this paper. Then, the connection outage probability, secrecy outage probability and secrecy throughput are analyzed. Furthermore, the transmission power and power allocation factor are designed very carefully to maximize the secrecy throughput. Simulation results show that compared with conventional CoMP policy, the proposed policy can not only achieve non-zero secrecy throughput when faced with severe security threats (i.e. for larger eavesdropper density), but also improve the secrecy throughput of 76.1% at most when faced with small security threats (i.e. for smaller eavesdropper density). -
WANG C X, HAIDER F, GAO X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014, 52(2): 122-130. doi: 10.1109/MCOM.2014. 6736752. BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2013, 52(2): 74-80. doi: 10.1109/ MCOM.2014.6736746. YANG N, WANG L F, GERACI G, et al. Safeguarding 5G wireless communication networks using physical layer security[J]. IEEE Communications Magazine, 2015, 53(4): 20-27. doi: 10.1109/MCOM.2015.7081071. ZHONG Z H, PENG J H, LUO W Y, et al. A tractable approach to analyzing the physical-layer security in k-tier heterogeneous cellular networks[J]. China Communications, 2015, 12(s1): 166173. doi: 10.1109/CC.2015.7386165. L T J, GAO H, and YANG S S. Secrecy transmit beamforming for heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(6): 1154-1170. doi: 10.1109/JSAC.2015.2416984. 鐘智豪, 羅文宇, 彭建華. 多層異構(gòu)蜂窩網(wǎng)協(xié)作傳輸和協(xié)作干擾機制的安全性能分析[J]. 中國科學: 信息科學, 2016, 46(1): 33-48. doi: 10.1360/N112015-00174. ZHONG Zhihao, LUO Wenyu, and PENG Jianhua. Secrecy performance analysis of cooperative transmission and cooperative jamming for multi-tier heterogeneous cellular networks[J]. Science China Information Sciences, 2016, 46(1): 33-48. doi: 10.1360/N112015-00174. WU H C, TAO X F, LI N, et al. Secrecy outage probability in multi-rat heterogeneous networks[J]. IEEE Communications Letters, 2016, 20(1): 53-56. doi: 10.1109/LCOMM.2015. 2499748. WANG H M, ZHENG T X, YUAN J H, et al. Physical layer security in heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2016, 64(3): 1204-1219. doi: 10.1109/TCOMM.2016.2519402. QI X H, HUANG K Z, ZHONG Z H, et al. Physical layer security of multi-hop aided downlink MIMO heterogeneous cellular networks[J]. China Communications, 2016(S2): 120-130. doi: 10.1109/CC.2016.7833466. XU M, TAO X F, YANG F, et al. Enhancing secured coverage with CoMP transmission in heterogeneous cellular networks[J]. IEEE Communications Letters, 2016, 20(11): 2272-2275. doi: 10.1109/LCOMM.2016.2598536. GONG S Q, XING C W, FEI Z S, et al. Resource allocation for physical layer security in heterogeneous network with hidden eavesdropper[J]. China Communications, 2016, 13(3): 82-95. doi: 10.1109/CC.2016.7445504. XU M, TAO X F, YANG F, et al. On energy efficient design for dynamic CoMP transmission in k-tier heterogeneous cellular networks[J]. China Communications, 2016, 13(6): 147-153. doi: 10.1109/CC.2016.7513210. YUSUF M and ARSLAN H. Secure multi-user transmission using CoMP directional modulation[C]. IEEE Vehicular Technology Conference, Boston, USA, 2015: 1-2. doi: 10.1109 /VTCFall.2015.7391131. CHAE S H, WAN C, LEE J H, et al. Enhanced secrecy in stochastic wireless networks: Artificial noise with secrecy protected zone[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(10): 1617-1628. doi: 10.1109/ TIFS.2014.2341453. HEATH R W, KOUNTOURIS M, and BAI T Y. Modeling heterogeneous network interference using Poisson point processes[J]. IEEE Transactions on Signal Processing, 2012, 61(16): 4114-4126. doi: 10.1109/TSP.2013.2262679. ZHOU X Y, GANTI R K, ANDREWS J G, et al. On the throughput cost of physical layer security in decentralized wireless networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(8): 2764-2775. doi: 10.1109/TWC. 2011.061511.102257. LIU W G, DING Z G, RATNARAJAH T, et al. On ergodic secrecy capacity of random wireless networks with protected zone[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 1-5. doi: 10.1109/TVT.2015.2477315. XU X M, YANG W W, and CAI Y M. Secure transmission in the random CRNs with secrecy guard zone and artificial noise[J]. Iet Communications, 2016, 10(15): 1904-1913. doi: 10.1049/iet-com.2016.0117. XU X M, YANG W W, and CAI Y M. On the secure spectral-energy efficiency tradeoff in random cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(10): 2706-2722. doi: 10.1109/ JSAC.2016.2605901. MUKHERJEE A and SWINDLEHURST A L. Detecting passive eavesdroppers in the MIMO wiretap channel[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 2809-2812. doi: 10.1109/ICASSP.2012.6288501. YANG N, YAN S H, YUAN J H, et al. Artificial noise: transmission optimization in multi-input single-output wiretap channels[J]. IEEE Transactions on Communications, 2015, 63(5): 1771-1783. doi: 10.1109/TCOMM.2015.2419634. -
計量
- 文章訪問數(shù): 1130
- HTML全文瀏覽量: 151
- PDF下載量: 211
- 被引次數(shù): 0