軟件定義網(wǎng)絡(luò)中基于負載均衡的多控制器部署算法
doi: 10.11999/JEIT170464
基金項目:
國家重大科學儀器設(shè)備開發(fā)專項(2013YQ030595)
Multi-controller Deployment Algorithm Based on Load Balance in Software Defined Network
Funds:
The National Major Scientific Instruments Development Project (2013YQ030595)
-
摘要: 隨著軟件定義網(wǎng)絡(luò)規(guī)模擴大,控制層與數(shù)據(jù)層解耦帶來了諸如控制器部署等新問題。該文提出基于負載均衡的多控制器部署算法(Multi-Controller Deployment Algorithm Based on Load Balance, MCDALB)。算法首先根據(jù)網(wǎng)絡(luò)拓撲結(jié)構(gòu)及其負載情況,確定控制器數(shù)量K;然后根據(jù)控制器容量限制,提出一種近似比為2的多控制器負載均衡算法,將網(wǎng)絡(luò)劃分成K個控制區(qū)域;最后根據(jù)區(qū)域內(nèi)所有交換機到控制器距離總和最小原則,在控制區(qū)域部署控制器。為了驗證算法的性能,選取實際網(wǎng)絡(luò)拓撲進行實驗。實驗結(jié)果表明,與AL, WL算法相比,該算法在滿足控制器負載近似比為2的同時,網(wǎng)絡(luò)最大延時差距不超過0.65 ms。
-
關(guān)鍵詞:
- 軟件定義網(wǎng)絡(luò) /
- 控制器部署 /
- 負載均衡
Abstract: With the expansion of Software Defined Network (SDN), the decoupling of control layer and data layer brings new problems such as controller deployment. In this paper, a Multi-Controller Deployment Algorithm Based on Load Balance (MCDALB) in SDN is proposed. Firstly, the number, K, of controllers is determined based on network topology and its load. Secondly, according to the limitation of controller capacity, a multi-controller load balance algorithm with approximate ratio of 2 is proposed, which divides the network into K control regions. Lastly, the position of the controller in each region is selected, according to the minimum sum of all switch-to-controller distances in the region. In order to verify the performance of the proposed algorithm, the actual network topologies are applied. As to compare with the AL and WL algorithms, simulation results show that the proposed algorithm not only balances the controllers load, with an approximation ratio of 2, but also meets the maximum gap of network delay not more than 0.65 ms.-
Key words:
- Software Defined Network (SDN) /
- Controller deployment /
- Load balance
-
HELLER B, SHERWOOD R, and MCKEOWN N. The controller placement problem[C]. The First ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, New York, USA, 2012: 7-12. doi: 10.1145/2342441.2342444. MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: Enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. doi: 10.1145/1355734.1355746. TOOTOONCHIAN A, GORBUNOV S, GANJALI Y, et al. On controller performance in software-defined networks[C]. Usenix Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, San Jose, CA, USA, 2012: 10-15. TOOTOONCHIAN A and GANJALI Y. HyperFlow: A distributed control plane for OpenFlow[C]. Internet Network Management Conference on Research on Enterprise Networking, San Francisco, CA, USA, 2010: 3-8. KOPONEN T, CASADO M, GUDE N, et al. Onix: A distributed control platform for large-scale production networks[C]. Usenix Symposium on Operating Systems Design and Implementation, Vancouver, Canada, 2010: 351-364. VOCHIN M, BORCOCI E, and AMBARUS T. On multi- controller placement optimization in software defined networking based WANs[C]. The Fourteenth International Conference on Networks ICN, Barcelona, Spain, 2015: 261-266. HOCK D, HARTMANN M, GEBERT S, et al. Pareto- optimal resilient controller placement in SDN-based core networks[C]. IEEE 2013 25th International Teletraffic Congress (ITC), California, USA, 2013: 1-9. doi: 10.1109/itc. 2013.6662939. LANGE S, GEBERTS, ZINNER T, et al. Heuristic approaches to the controller placement problem in large scale SDN networks[J]. IEEE Transactions on Network Service Management, 2015, 12(1): 4-17. doi: 10.1109/tnsm.2015. 2402432. SAHOO K S, SAHOO B, DASH R, et al. Optimal controller selection in software defined network using a greedy-SA algorithm[C]. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, New Delhi, India, 2016: 2342-2346. RATH H K, REVOORI V, NADAF S M, et al. Optimal controller placement in Software Defined Networks (SDN) using a non-zero-sum game[C]. Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Sydney, Australia, 2014: 1-6. doi: 10.1109/WoWMoM.2014.6918987. MATTOS D M F, DUARTE O C M B, and PUJOLLE G. A resilient distributed controller for software defined networking[C]. 2016 IEEE International Conference on Communications (ICC). IEEE, Kuala Lumpur, Malaysia, 2016: 1-6. doi: 10.1109/icc.2016.7511032. 姚琳元, 陳穎, 宋飛, 等. 基于時延的軟件定義網(wǎng)絡(luò)快速響應(yīng)控制器部署[J]. 電子與信息學報, 2014, 36(12): 2802-2808. doi: 10.3724/SP.J.1146.2014.00211. YAO Linyuan, CHEN Ying, SONG Fei, et al. Delay-aware controller placement for fast response in software-defined network[J]. Journal of Electronics Information Technology, 2014, 36(12): 2802-2808. doi: 10.3724/SP.J.1146.2014.00211. XIAO P, LI Z Y, GUO S, et al. Self-adaptive SDN controller placement for wide area networks[J]. Frontiers of Information Technology Electronic Engineering, 2016, 17(7): 620-633. doi: 10.1631/fitee.1500350. LIU J and XIE R. Reliability-based controller placement algorithm in software defined networking[J]. Computer Science and Information Systems, 2016, 13(2): 547-560. doi: 10.2298/csis160225014l. 劉彩霞, 盧干強, 湯紅波, 等. 一種基于Viterbi算法的虛擬網(wǎng)絡(luò)功能自適應(yīng)部署方法[J]. 電子與信息學報, 2016, 38(11): 2922-2930. doi: 10.11999/JEIT160045. LIU Caixia, LU Ganqiang, TANG Hongbo, et al. Adaptive deployment method for virtualized network function based on viterbi algorithm[J]. Journal of Electronics Information Technology, 2016, 38(11): 2922-2930. doi: 10.11999/ JEIT160045. 湯紅波, 袁泉, 盧干強, 等. 一種支持節(jié)點分割的vEPC虛擬網(wǎng)絡(luò)功能部署模型[J]. 電子與信息學報, 2017, 39(3): 546-553. doi: 10.11999/JEIT160507. TANG Hongbo, YUAN Quan, LU Ganqiang, et al. A model for virtualized network function deployment based on node-splitting in vEPC[J]. Journal of Electronics Information Technology, 2017, 39(3): 546-553. doi: 10.11999/ JEIT160507. -
計量
- 文章訪問數(shù): 1515
- HTML全文瀏覽量: 250
- PDF下載量: 292
- 被引次數(shù): 0