一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于水下成像模型的圖像清晰化算法

楊愛萍 曲暢 王建 張莉云

楊愛萍, 曲暢, 王建, 張莉云. 基于水下成像模型的圖像清晰化算法[J]. 電子與信息學報, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
引用本文: 楊愛萍, 曲暢, 王建, 張莉云. 基于水下成像模型的圖像清晰化算法[J]. 電子與信息學報, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
Underwater Image Visibility Restoration Based on Underwater Imaging Model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
Citation: Underwater Image Visibility Restoration Based on Underwater Imaging Model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460

基于水下成像模型的圖像清晰化算法

doi: 10.11999/JEIT170460
基金項目: 

國家自然科學基金(61372145, 61472274)

Underwater Image Visibility Restoration Based on Underwater Imaging Model

Funds: 

The National Natural Science Foundation of China (61372145, 61472274)

  • 摘要: 受水下場景中有機物和懸浮顆粒的影響,水下圖像存在對比度低、顏色失真和細節(jié)丟失等問題。同時,水下場景中通常有人工光源存在,造成圖像光照不均。傳統(tǒng)基于圖像去霧的方法用于水下圖像復原時效果欠佳,為充分考慮水對光的吸收和散射作用,近期提出了新的水下成像模型和圖像復原方法。但是這些方法未考慮紅通道影響,導致估計的散射比偏大;另外,也未考慮人工光源的影響,導致估計的背景光過大。針對這些問題,該文提出一套有效的水下圖像清晰化方案。首先,通過設(shè)置閾值確定是否將紅通道信息用于暗通道計算,并將反映人工光源影響的飽和度指標用于散射比估計,以減小人工光源的影響。由此,提出了基于紅通道預判和飽和度指標的暗通道計算方法。然后,根據(jù)三通道衰減系數(shù)比估計每個通道的透射率,可彌補目前很多方法假設(shè)藍綠通道透射率一致的缺陷。最后,利用Shades of Gray算法估計環(huán)境光,并結(jié)合新的水下成像模型得到復原圖像。實驗結(jié)果表明,該文算法可顯著提升圖像的對比度,得到顏色自然、細節(jié)清晰的復原圖像。
  • HUANG Bingjing, LIU Tiegen, HU Haofeng, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826.
    LI Chongyi, GUO Jichang, CONG Runming, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677. doi: 10.1109/TIP.2016.2612882.
    DREWS P, NASCIMENTO E R, BOTELHO S, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24-35. doi: 10.1109/MCG.2016.26.
    楊愛萍, 張莉云, 曲暢, 等. 基于加權(quán) L1 正則化的水下圖像清晰化算法[J]. 電子與信息學報, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics Information Technology, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    WEN Haocheng, TIAN Yonghong, HUANG Tiejun, et al. Single underwater image enhancement with a new optical model[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 753-756.
    ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]. IEEE Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2012: 81-88.
    FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A retinex-based enhancing approach for single underwater image[C]. IEEE International Conference on Image Processing (ICIP), Paris, France, 2014: 4572-4576.
    GALDRAN A, PARDO D, PICON A, et al. Automatic red-channel underwater image restoration[J]. Journal of Visual Communication and Image Representation, 2015, 26: 132-145. doi: 10.1016/j.jvcir.2014.11.006.
    CHENG Chiayang, SUNG Chiachi, and CHANG Hernghua. Underwater image restoration by red-dark channel prior and point spread function deconvolution[C]. IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpar, Malaysia, 2015: 110-115.
    LU Huimin, LI Yujie, XU Xing, et al. Underwater image enhancement method using weighted guided trigonometric filtering and artificial light correction[J]. Journal of Visual Communication and Image Representation, 2016, 38: 504-516. doi: 10.1016/j.jvcir.2016.03.029.
    MALLIK S, KHAN S S, and PATI U C. Underwater image enhancement based on dark channel prior and histogram equalization[C]. IEEE International Conference on Innovations in Information Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2016: 139-144.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[C]. European Conference on Computer Vision (ECCV), Crete, Greece, 2010: 1-14.
    ZHAO Xinwei, JIN Tao, and QU Song. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172. doi: 10.1016/j.oceaneng.2014.11.036.
    PARK D, PARK H, HAN D K, et al. Single image dehazing with image entropy and information fidelity[C]. IEEE International Conference on Image Processing(ICIP), Paris, France, 2014: 4037-4041.
    LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. doi: 10.1038/ scientificamerican1277-108.
    BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of The Franklin Institute- engineering and Applied Mathematics, 1980, 310(1): 1-26. doi: 10.1016/0016-0032(80)90058-7.
    FINLAYSON G D and TREZZI E. Shades of gray and colour constancy[C]. Color Imaging Conference(CIC), Arizona, USA, 2004: 37-41.
    LI Fang, WU Jinyong, WANG Yike, et al. A color cast detection algorithm of robust performance[C]. IEEE Fifth International Conference on Advanced Computational Intelligence(ICACI), Nanjing, China, 2012: 662-664.
  • 加載中
計量
  • 文章訪問數(shù):  2064
  • HTML全文瀏覽量:  240
  • PDF下載量:  274
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-11-02
  • 刊出日期:  2018-02-19

目錄

    /

    返回文章
    返回