基于矩陣填充的合成寬帶高頻雷達非網(wǎng)格目標分辨技術(shù)研究
doi: 10.11999/JEIT170449
-
1.
(哈爾濱工業(yè)大學(xué)電子與信息工程學(xué)院 哈爾濱 150001)
國家自然科學(xué)基金(61171182, 61032011, 61171180, 61571159),中央高?;究蒲袠I(yè)務(wù)費專項資金(HIT.MKSTISP. 201613, HIT.MKSTISP.201626)
Off-the-grid Targets Resolution of Synthetic Bandwidth High Frequency Radar Based on Matrix Completion
-
1.
(School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China)
The National Natural Science Foundation of China (61171182, 61032011, 61171180, 61571159), The Fundamental Research Funds for the Central Universities (HIT. MKSTISP.201613, HIT.MKSTISP.201626)
-
摘要: 高頻雷達由于工作在擁擠的高頻頻段(3~30 MHz),連續(xù)頻帶資源十分有限,有限的帶寬限制了對目標的分辨能力。該文引入一種合成寬帶的發(fā)射信號,同時針對該信號,提出一種基于矩陣填充(Matrix Completion, MC)的1維和2維目標參數(shù)估計方法,分別稱之為矩陣填充1維估計(MCE-1D)和矩陣填充2維估計(MCE-2D)方法,該方法將不完備采樣集合變換成低秩矩陣,通過構(gòu)造雙重漢克爾(two-fold Hankel)矩陣將其轉(zhuǎn)化為半定規(guī)劃(Semi- Definite Programming, SDP)問題求解。新方法應(yīng)用于高頻雷達中,可以在非連續(xù)譜的背景下獲得場景中目標位置的準確估計,很好地解決了非網(wǎng)格目標在傳統(tǒng)網(wǎng)格類方法中的基失配問題,新方法對于非網(wǎng)格目標具有更高的分辨能力及抗噪性能。仿真處理結(jié)果驗證了該方法的有效性。Abstract: High Frequency Radar (HFR) works in the crowded high-frequency band (3~30 MHz) with limited continuous bandwidth. It affects the ability to distinguish the near targets. Therefore, this paper introduces a kind of synthesis bandwidth signal with a proposed method for estimating the target parameters in 1-D and 2-D based on Matrix Completion (MC). They are respectively named Matrix Completion Estimation for One Dimension (MCE-1D) and Matrix Completion Estimation for Two Dimensions (MCE-2D). The incomplete sampling set can be considered as low rank matrix, by constructing the two-fold Hankel matrix, this problem is transformed into a Semi-Definite Programming (SDP) problem. Using this new method to the high frequency radar, then the accurate estimation of the target position in the scene can be obtained in the background of the discontinuous spectrum, which solves the problem of base mismatch for off-the-grid targets in the traditional grid estimate method. It also has higher resolution and anti-noise performance. The simulation results demonstrate the effectiveness of this method.
-
YAN H, XU J, and ZHANG X. Compressed sensing radar imaging of off-grid sparse targets[C]. IEEE Radar Conference, Arlington, VA, USA, 2015: 0690-0693. doi: 10.1109/RADAR. 2015.7131084. LEONG H W and DAWE B. Channel availability for east coast high frequency surface wave radar systems [R]. Defence Research Establishment Ottawa, 2001. DUARTE M F and BARANIUK R G. Spectral compressive sensing[J]. Applied and Computational Harmonic Analysis, 2013, 35(1): 111-129. doi: 10.1016/j.acha.2012.08.003. 姚迪, 張鑫, 吳小川, 等. 基于迭代連續(xù)匹配追蹤的高頻地波雷達單次快拍DOA估計方法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(7): 1480-1485. doi: 10.3969/j.issn.1001-506X.2017.07.08. YAO Di, ZHANG Xin, WU Xiaochuan, et al. Single snapshot DOA estimation algorithm based on iteration continuous basis pursuit for HFSWR [J]. Systems Engineering and Electronics, 2017, 39(7): 1480-1485. doi: 10.3969/j.issn.1001- 506X.2017.07.08. 陳勝, 席峰, 劉中. 正交壓縮采樣雷達偏離網(wǎng)格目標時延估計技術(shù)[J]. 電子學(xué)報, 2015, 43(12): 2352-2359. doi: 10.3969/ j.issn.0372-2112.2015.12.002. CHEN Sheng, XI Feng, and LIU Zhong. Time-delay estimation of off-grid targets for quadrature compressive sampling radar[J]. Acta Electronica Sinica, 2015, 43(12): 2352-2359. doi: 10.3969/j.issn.0372-2112.2015.12.002. 汪鈺, 姜元, 王彥華, 等. 基于原子范數(shù)最小化的一維距離像散射中心估計[J]. 信號處理, 2017, 33(4): 511-515. doi: 10.16798/j.issn.1003-0530.2017.04.008. WANG Yu, JIANG Yuan, WANG Yanhua, et al. Scattering center estimation of HRRP via atomic norm minimization[J]. Journal of Signal Processing, 2017, 33(4): 511-515. doi: 10.16798/j.issn.1003-0530.2017.04.008. 陳栩杉, 張雄偉, 楊吉斌, 等. 如何解決基不匹配問題: 從原子范數(shù)到無網(wǎng)格壓縮感知[J]. 自動化學(xué)報, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539. CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: from atomic norm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335-346. doi: 10.16383/j.aas.2016.c150539. CANDES E and RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55(6): 111-119. doi: 10.1145/2184319.2184343. CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936. doi: 10.1109/ JPROC.2009.2035722. CHEN Y and CHI Y. Spectral compressed sensing via structured matrix completion[C]. International Conference on Machine Learning, Atlanta, Georgia, USA, 2013(3): 414-422. doi: 10.1109/TIT.2014.2343623. 趙玉娟, 鄭寶玉, 陳守寧. 矩陣填充及其在信號處理中的應(yīng)用[J]. 信號處理, 2015, 31(4): 423-436. doi: 10.3969/j.issn.1003- 0530.2015.04.007. ZHAO Yujuan, ZHENG Baoyu, and CHEN Shouning. Matrix completion and its application in signal processing[J]. Journal of Signal Processing, 2015, 31(4): 423-436. doi: 10.3969/j.issn.1003-0530.2015.04.007. YANG D, LIAO G, ZHU S, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1539-1543. doi: 10.1109/LGRS.2014.2300170. HU X, TONG N, DING S, et al. ISAR imaging with sparse stepped frequency waveforms via matrix completion[J]. Remote Sensing Letters, 2016, 7(9): 847-854. doi: 10.1080/ 2150704X.2016.1192699. BI H, JIANG C, ZHANG B, et al. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1546-1550. doi: 10.1109/LGRS.2015. 2412677. BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274. FAZEL, M, HAITHAM H, and STEPHEN P. A rank minimization heuristic with application to minimum order system approximation[C]. Proceedings of the 2001 American Control Conference, Arlington, VA, 2001(6): 4734-4739. TUTUNCU R H, TOH K C, and TODD M J. SDPT3A MATLAB software package for semidefinite-quadratic-linear programming, version 3.0 technical report[R]. Department of Mathematics, National University of Singapore, Singapore, 2001. FEUILLEN T, MALLAT A, and VANDENDORPE L. Stepped frequency radar for automotive application: Range-Doppler coupling and distortions analysis[C]. IEEE Military Communications Conference, Baltimore, MD, 2016: 894-899. FYHN K, DADKHAHI H, and DUARTE M F. Spectral compressive sensing with polar interpolation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013: 6225-6229. -
計量
- 文章訪問數(shù): 894
- HTML全文瀏覽量: 116
- PDF下載量: 228
- 被引次數(shù): 0