基于改進壓縮感知的缺損光纖Bragg光柵傳感信號修復(fù)方法
doi: 10.11999/JEIT170424
-
1.
(重慶郵電大學(xué)工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡(luò)化控制教育部重點實驗室 重慶 400065) ②(重慶郵電大學(xué)光纖通信技術(shù)重點實驗室 重慶 400065)
國家自然科學(xué)基金(61071117),重慶市研究生科研創(chuàng)新項目(CYS17235)
A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal
-
1.
(Key Laboratory of Industrial Internet of Things and Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
-
2.
(Key Laboratory of Optical Fiber Communication Technology, Chongqing University, Chongqing 400065, China)
The National Natural Science Foundation of China (61071117), The Graduate Student Research Innovation Project of Chongqing (CYS17235)
-
摘要: 光纖光柵傳感在實際的應(yīng)用中,存在采樣信號數(shù)據(jù)丟失問題,該文提出一種改進重構(gòu)算法的壓縮感知信號修復(fù)方法。根據(jù)缺損信號特征,選取與之匹配的觀測矩陣與稀疏字典?;趬嚎s感知重構(gòu)算法,提出匹配光纖布拉格光柵(FBG)信號特征的自適應(yīng)閾值函數(shù),同時增設(shè)閾值判決條件。分析了信號修復(fù)與傳感測量精度的關(guān)系,采用重建信號的尋峰誤差來驗證信號的修復(fù)效果。仿真結(jié)果顯示,在FBG光譜數(shù)據(jù)缺失30%的情況下,恢復(fù)信號的平均相對誤差為10-6;均方根誤差為0.0707,比對比算法低0.0232~0.1159;且系統(tǒng)平均運行時間遠低于對比算法,表明采用該文算法修復(fù)缺損的FBG傳感信號具有較高的重構(gòu)精度與較好的實用性。Abstract: To solve the problem of data loss in the field of Fiber Bragg Grating (FBG) sensing, a signal repaired method based on compressed sensing with improved reconstruction algorithm is proposed. According to the characteristics of signal, the suitable observation matrix and sparse dictionary are selected to repair the damaged spectral signal. An adaptive threshold function, which is used to match the characteristics of signal, is proposed in the reconstruction algorithm, and the criterion of threshold rationality is added. The relationship between the recovery precision of signal and sensing accuracy of fiber Bragg grating is analyzed, and the repairing effects are validated by peak-detected error of reconstructed signal. Simulation results show that the average relative error is10-6 when 30% of the data is lost. The root mean square error is 0.0707, which is 0.0232~0.1159 lower than the contrast algorithms. The peak-detected error is lower than the others. Besides, the average running time of the system is much lower than the compared algorithms. All the results show that the proposed algorithm can well achieve the recovery of missing data, so as to improve the measurement precision of fiber Bragg grating sensor.
-
LI Jianzhi, XU Longxiang, and KINZO Kishida. FBG-based positioning method for BOTDA sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5236-5242. doi: 10.1109/JSEN.2016. 2556748. CHEN W P, SHIH F H, TSENG P J, et al. Application of a packaged fiber Bragg grating sensor to outdoor optical fiber cabinets for environmental monitoring[J]. IEEE Sensors Journal, 2015, 15(2): 734-741. doi: 10.1109/JSEN.2014. 2353040. 蔣善超, 王靜, 隋青美, 等. 基于壓縮感知算法的光柵光譜重構(gòu)及其應(yīng)用特性研究[J]. 光學(xué)學(xué)報, 2014, 34(8): 322-326. doi: 10.3788/CJL201542.0805008. JIANG Shanchao, WANG Jing, SUI Qingmei, et al. Research on grating spectrum reconstruction based on compressed sensing and its application characteristics[J]. Acta Optica Sinica, 2014, 34(8): 322-326. doi: 10.3788/CJL201542. 0805008. DING L Y, ZHOU C, DENG Q X, et al. Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things[J]. Automation in Construction, 2013, 36: 25-37. doi: 10.1016/j.autcon.2013.08.017. HU Haixiao, LI Shuxin, WANG Jihui, et al. FBG-based real-time evaluation of transverse cracking in cross-ply laminates[J]. Composite Structures, 2016, 138: 151-160. doi: 10.1016/j.compstruct.2015.11.037. SAI Ji, SUN Yajie, and SHEN Jian. A method of data recovery based on compressive sensing in wireless structural health monitoring[J]. Mathematical Problems in Engineering, 2014: 546478. doi: 10.1155/2014/546478. 張新鵬, 胡蔦慶, 程哲, 等. 基于壓縮感知的振動數(shù)據(jù)修復(fù)方法[J]. 物理學(xué)報, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506. ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506. 余翔, 鄭寒冰, 曾銀強. 基于壓縮感知的自適應(yīng)加權(quán)匹配追蹤算法[J]. 重慶郵電大學(xué)學(xué)報(自然科學(xué)版), 2016, 28(5): 707-712. doi: 10.3979/j.issn.1673-825X.2016.05.015. YU Xiang, ZHENG Hanbing, and ZENG Yinqiang. Adaptive weighting matching pursuit algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2016, 28(5): 707-712. doi: 10.3979/j.issn.1673-825X.2016.05. 015. 姜力茹, 許云達, 高猛. 基于壓縮感知的塔康方位估計算法[J].重慶郵電大學(xué)學(xué)報(自然科學(xué)版), 2017, 29(3): 365-370. doi: 10.3979/j.issn.1673-825X.2017.03.013. JIANG Liru, XU Yunda, and GAO Meng. TACAN azimuth estimation algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2017, 29(3): 365-370. doi: 10.3979/j.issn.1673-825X.2017.03.013. YUAN Mei, WANG Shujuan, DONG Shaopeng, et al. Reconstruction of undersampled damage monitoring signal based on compressed sensing[C]. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference Yantai, China, 2014: 2443-2448. doi: 10.1109/CGNCC.2014. 7007553. CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979. BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP. 2007.4286571. MALLAT S G and ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082. NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316. doi: 10.1109 /JSTSP.2010.2042412. CHEN Yong, ZHANG Yulan, LIU Huanlin, et al. FBG sensing signal dealing with improved orthogonal subspace pursuit method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(21): 3303-3309. doi: 10.1016/ j.ijleo.2015.08.025. WANG Rui, ZHANG Jinglei, REN Suli, et al. A reducing iteration orthogonal matching pursuit algorithm for compressive sensing[J]. Tsinghua Science and Technology, 2016, 21(1): 71-79. doi: 10.1109/TST.2016.7399284. THONG T D, LU G, NAM N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2008, 10: 581-587. doi: 10.1109/ACSSC.2008.5074472. LI Mingyu, YANG Zhenxing, ZHANG Zhongming, et al. Sparsity adaptive estimation of memory polynomial based models for power amplifier behavioral modeling[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 370-372. doi: 10.1109/LMWC.2016.2549024. 唐朝偉, 王雪鋒, 杜永光. 一種稀疏度自適應(yīng)分段正交匹配追蹤算法[J]. 中南大學(xué)學(xué)報(自然科學(xué)版), 2016, 47(3): 784-792. doi: 10.11817/j.issn.1672-7207.2016.03.011. TANG Chaowei, WANG Xuefeng, and DU Yongguang. A sparsity adaptive stagewise orthogonal matching pursuit algorithm[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 784-792. doi: 10.11817/j.issn. 1672-7207.2016.03.011. DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. 周亞同, 王麗莉, 唐紅梅. 基于壓縮感知的稀疏度自適應(yīng)圖像修復(fù)[J]. 鐵道學(xué)報, 2014, 36(9): 52-59. doi: 10.3969/j.issn. 1001-8361.2014.09.008. ZHOU Yatong, WANG Lili, and TANG Hongmei. Sparsity adaptive algorithm for image inpainting based on compressive sensing[J]. Journal of the China Railway Society, 2014, 36(9): 52-59. doi: 10.3969/j.issn.1001-8361.2014.09.008. 吳迪, 王奎民, 趙玉新, 等. 分段正則化正交匹配追蹤算法[J]. 光學(xué)精密工程, 2014, 22(5): 1395-1402. doi: 10.3788/OPE. 20142205.1395. WU Di, WANG Kuimin, ZHAO Yuxin, et al. Stagewise regularized orthogonal matching pursuit algorithm[J]. Optics and Precision Engineering, 2014, 22(5): 1395-1402. doi: 10.3788/OPE.20142205.1395. WANG Zhihong, SUN Guiling, ZHANG Ying, et al. Research on iterative thresholding orthogonal matching pursuit reconstruction algorithm based on sparsity adaptive[J]. Journal of Computational Information Systems, 2014, 10(10): 4339-4346. doi: 10.12733/jcis10336. CHEN Yong, YANG Kai, and LIU Huanlin. Self-adaptive multi-peak detection algorithm for FBG sensing signal[J]. IEEE Sensors Journal, 2016, 16(8): 2658-2665. doi: 10.1109/ JSEN.2016.2516038. 陳勇, 楊凱, 劉煥淋. 多峰光纖布拉格光柵傳感信號的自適應(yīng)尋峰處理[J]. 中國激光, 2015, 42(8): 184-189. doi: 10.3788/ CJL201542.0805008. CHEN Yong, YANG Kai, and LIU Huanlin. A Self-adaptive peak detection algorithm to process multi-peak fiber Bragg grating sensing signal[J]. Chinese Journal of Lasers, 2015, 42(8): 184-189. doi: 10.3788/CJL201542.0805008. -
計量
- 文章訪問數(shù): 1804
- HTML全文瀏覽量: 146
- PDF下載量: 132
- 被引次數(shù): 0