上行3D-MIMO中利用結(jié)構(gòu)稀疏低秩特性的信道估計(jì)算法
doi: 10.11999/JEIT170399
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61501124)
Structured Sparse and Low Rank Channel Estimation in Uplink 3D-MIMO
Funds:
The National Natural Science Foundation of China (61501124)
-
摘要: 3維多輸入多輸出(3D-MIMO)系統(tǒng)能有效提升頻譜效率,提高系統(tǒng)容量。但用戶(hù)數(shù)和天線數(shù)的劇增,無(wú)法保證所有用戶(hù)的導(dǎo)頻都正交,給3D-MIMO信道估計(jì)帶來(lái)估計(jì)精度下降和復(fù)雜度增加等問(wèn)題。該文分析了上行3D-MIMO系統(tǒng)信道的結(jié)構(gòu)稀疏特性和低秩特性,并基于這些特性提出一種信道估計(jì)算法,給出了算法的收斂性和復(fù)雜度。仿真結(jié)果表明估計(jì)算法能準(zhǔn)確地恢復(fù)3D-MIMO的信道系數(shù),并有較低的復(fù)雜度。
-
關(guān)鍵詞:
- 信道估計(jì) /
- 3D-MIMO /
- 結(jié)構(gòu)稀疏 /
- 低秩 /
- 匹配追蹤
Abstract: Three Dimension Multi-Input Multi-Output (3D-MIMO) systems can effectively improve frequency efficiency and system capacity. However, with the growing number of antennas and users, pilot sequences are non- orthogonal, which will affect the accuracy of 3D-MIMO channel estimation and increase complexity. In this paper, the structured sparseness and low rank property of 3D-MIMO channel are studied. By taking advantage of these properties, a channel estimation algorithm is proposed, and the convergence and complexity of the algorithm are analyzed. Simulation results verify that the proposed algorithm can accurately recover 3D-MIMO channel with low complexity.-
Key words:
- Channel estimation /
- 3D-MIMO /
- Structured sparseness /
- Low rank /
- Matching pursuit
-
NAM Y H, NG B L, SAYANA K, et al. Full-Dimension MIMO (FD-MIMO) for next generation cellular technology [J]. IEEE Communications Magazine, 2013, 51(6): 172-179. doi: 10.1109/MCOM.2013.6525612. MARZETTA T. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092. BAJWA W U, HAUPT J, SAYEED M S, et al. Compressed channel sensing: A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076. doi: 10.1109/ JPROC.2010.2042415. TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. New York: Cambridge University Press, 2005: 290-328. POUTANEN J, HANEDA K, SALMI J, et al. Significance of common scatters in multi-link indoor radio wave propagation [C]. Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 2010: 1-5. XIE Hongxiang, GAO Feifei, and JIN Shi. An overview of low-rank channel estimation for massive MIMO systems[J]. IEEE Access, 2016, 4: 7313-7321. doi: 10.1109/ACCESS. 2016.2623772. BARBOTIN Y, HORMATI A, RANGAN S, et al. Estimation of sparse MIMO channels with common support [J]. IEEE Transactions on Communications, 2012, 60(12): 3705-3716. doi: 10.1109/TCOMM.2012.091112.110439. NAN Yang, ZHANG Li, and SUN Xin. Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 345-348. doi: 10.1109/LWC.2015.2414933. LIU Kai, FENG Hui, YANG Tao, et al. Structured sparse channel estimation for 3D-MIMO systems[C]. IEEE Vehicular Technology Conference (VTC), Nanjing, China, 2016: 1-6. TSAI Chengrung, CHEN Chianghen, LIU Yuhsin, et al. Joint spatially sparse channel estimation for millimeter-wave cellular systems[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington D.C., USA, 2016: 605-609. NGUYEN S L H and GHRAYEB A. Compressive sensing-based channel estimation for massive multiuser MIMO systems[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013: 2890-2895. FANG Jun, LI Xingjian, LI Hongbin, et al. Low-rank covariance-assisted downlink training and channel estimation for FDD massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1935-1947. doi: 10.1109/TWC.2017.2657513. ZHU Yi, LIU Lingjia, and ZHANG Jianzhong. Joint angle and delay estimation for 2D active broadband MIMO-OFDM systems[C]. IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3300-3305. RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40-60. doi: 10.1109/ MSP.2011.2178495. GAO Zhen, DAI Linglong, DAI Wei, et al. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO[J]. IEEE Transactions on Communications, 2016, 64(2): 607-617. doi: 10.1109/ TCOMM.2015.2508809. NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2008, 53(12): 93-100. GOLUB G H and VAN LOAN C F. Matrix Computations [M]. Baltimore and London: Johns Hopkins University Press, 1996: 470-499. WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007. 894265. COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172. WU Xiaying, GU Lixin, WANG Wenjin, et al. Pilot design and AMP-based channel estimation for massive MIMO- OFDM uplink transmission[C]. IEEE Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1-7. -
計(jì)量
- 文章訪問(wèn)數(shù): 1472
- HTML全文瀏覽量: 206
- PDF下載量: 185
- 被引次數(shù): 0