一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于魯棒前景選擇的顯著性檢測

王晨 樊養(yǎng)余 李波

王晨, 樊養(yǎng)余, 李波. 基于魯棒前景選擇的顯著性檢測[J]. 電子與信息學(xué)報, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
引用本文: 王晨, 樊養(yǎng)余, 李波. 基于魯棒前景選擇的顯著性檢測[J]. 電子與信息學(xué)報, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
Citation: WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390

基于魯棒前景選擇的顯著性檢測

doi: 10.11999/JEIT170390
基金項目: 

國家自然科學(xué)基金(61379104)

Saliency Detection Based on Robust Foreground Selection

Funds: 

The National Natural Science Foundation of China (61379104)

  • 摘要: 顯著性檢測是指自動提取未知場景中符合人類視覺習(xí)慣的興趣目標(biāo)的方法。為了進一步提高檢測的準(zhǔn)確性,該文提出了利用魯棒前景種子的流形排序進行顯著性檢測的算法。首先利用角點檢測和邊緣連接算法得到兩個不同的凸包,用它們的交集初步確立目標(biāo)區(qū)域的大致位置;然后利用凸包外邊緣作為標(biāo)準(zhǔn)對凸包內(nèi)的超像素進行相似度檢測,將與大部分外邊緣相似的超像素去除,得到更準(zhǔn)確的目標(biāo)樣本作為前景種子;利用錨點圖構(gòu)建新的圖結(jié)構(gòu)表示數(shù)據(jù)節(jié)點之間的關(guān)系;接著通過基于前景和背景種子的流形排序算法對圖像所有區(qū)域進行排序,并得到兩種不同的顯著性檢測圖;最后借助代價函數(shù)對顯著性圖進行優(yōu)化,得到最終的顯著性檢測結(jié)果。經(jīng)實驗表明,與幾種經(jīng)典算法對比,該文方法可以進一步提高顯著性算法的精確度和召回率。
  • GUO Chuanxin, LI Zhenbo, QIAO Xi, et al. Image segmentation of underwater sea cucumber using grabcut with saliency map[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(1): 147-152. doi: 10.6041/ j.issn.1000-1298. 2015. S0.025.
    郭傳鑫, 李振波, 喬曦, 等. 基于融合顯著圖與GrabCut算法的水下海參圖像分割[J]. 農(nóng)業(yè)機械學(xué)報, 2015, 46(1): 147-152. doi: 10.6041/j.issn.1000-1298.2015.S0.025.
    薛夢霞, 彭暉, 劉士榮, 等. 基于視覺顯著性的場景目標(biāo)識別[J]. 控制工程, 2106, 23(5): 687-692. doi: 1671-7848(2016) 05-0687-06.
    XUE Mengxia, PENG Hui, LIU Shirong, et al. Scene object recognition based on visual saliency[J]. Control Engineering of China, 2106, 23(5): 687-692. doi: 1671-7848(2016)05-0687- 06.
    李然, 李艷靈, 崔子冠, 等. 視覺顯著性導(dǎo)向的圖像壓縮感知測量與重建[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    LI Ran, LI Yanling, CUI Ziguang, et al. Visual saliency oriented compressive sensing measurement and reconstruction of images[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    趙宏偉, 李清亮, 劉萍萍, 等. 特征點顯著性約束的圖像檢索方法[J]. 吉林大學(xué)學(xué)報(工學(xué)版), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    ZHAO Hongwei, LI Qingliang, LIU Pingping, et al. Feature saliency constraint based image retrieval method[J]. Journal of Jinlin University (Engineering and Technology Edition), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    PERAZZI F, KRAHENBUHUL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 733-740. doi: 10.1109 /CVPR.2012. 6247743.
    WEI Yichen, WEN Fang, ZHU Wangjing, et al. Geodesic saliency using background priors[C]. European Conference on Computer Vision 2012, Firenze, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3.
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    ZHU Wangjiang, LIANG Shuang, WEI Yiche, et al. Saliency optimization from robust background detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    LIU Tie, SUN Jian, ZHENG Nanning, et al. Learning to detect a salient object[C]. Computer Vision and Pattern Recognition, 2007, Minneapolis, USA, 2007: 353-367. doi: 10.1109/CVPR.2007.383047.
    YANG Jimei and YANG Minghsuan. Top-down visual saliency via joint CRF and dictionary learning[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 2296-2303. doi: 10.1109/CVPR.2012.6247940.
    GOPALAKRISHNAN V, HU Y, and RAJAN D. Random walks on graphs for salient object detection in images[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3232-3242. doi: 10.1109/TIP.2010.2053940.
    呂建勇, 唐振民. 一種基于圖的流形排序的顯著性目標(biāo)檢測改進方法[J]. 電子與信息學(xué)報, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    LU Jianyong and TANG Zhenmin. An imporved graph-based manifold ranking for salient object detection[J]. Journal of Elecctronics Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    QI Wei, CHENG Mingming, BORJI Ali, et al. Saliency-Rank: Two-stage manifold ranking for salient object detection[J]. Computational Visual Media, 2015, 1(4): 309-320. doi: 10. 1007/s41095-015-0028y.
    XIE Yulin, LU Huchuan, and YANG Minghsuan. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698. doi: 10.1109/TIP. 2012.2216276.
    LIU Risheng, CAO Junjie, LIN Zhouchen, et al. Adaptive differential equation learning for visual saliency detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 3862-3869. doi: 10.1109/CVPR.2014.494.
    林曉, 王燕玲, 朱恒亮, 等. 改進凸包的貝葉斯模型顯著性檢測算法[J]. 計算機輔助設(shè)計與圖形學(xué)學(xué)報, 2017, 29(2): 221-228.
    LIN Xiao, WANG Yanling, ZHU Henliang, et al. Saliency detection based on the Bayesian model of improved convex hull[J]. Journal of computer-Aided Design and Computer Graphics, 2017, 29(2): 221-228.
    ZHOU D, WESTON J, GRETTON A, et al. Ranking on data manifolds[C]. Neural Information Processing Systems 2003, Vancouver, Canada, 2003: 169-176.
    WEIJER J, GEVERS T, and BAGDANOV A. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 150-156. doi: 10.1109/ TPAMI.2006.3.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/ TPAMI.2012.120.
    LIU Wei, HE Junfeng, and CHANG Shihfu. Large graph construction for scalable semi-supervised learning[C]. The 27th International Conference on Machine Learning, Haifa, 2010: 679-686.
    YANG Y, NIE F, XU D, et al. A multimedia retrieval framework basd on semi-supervised ranking and relevance feedback[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 723-742. doi: 10.1109/ TPAMI.2011.170.
    YAN Qiong, SHI Jianping, XU Li, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729. doi: 10.1109/ TPAMI.2015.2465960.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]. Computer Vision and Pattern Recognition 2009, Miami, USA, 2009: 1597-1604. doi: 10.1109 /CVPR.2009.5206596.
    CHENG M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]. Computer Vision and Pattern Recognition 2011, Colorado, 2011: 409-416. doi: 10.1109/CVPR.2011.5995344.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 1155-1162. doi: 10.1109 /CVPR.2013.153.
  • 加載中
計量
  • 文章訪問數(shù):  1129
  • HTML全文瀏覽量:  133
  • PDF下載量:  292
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回