面向物聯(lián)網(wǎng)準(zhǔn)靜態(tài)信道的中繼協(xié)作密鑰生成方法
doi: 10.11999/JEIT170384
國家自然科學(xué)基金(61379006),國家863計(jì)劃項(xiàng)目(2015AA01A708),國家自然科學(xué)基金創(chuàng)新群體項(xiàng)目(61521003)
Relay Cooperative Secret Key Generation for Quasi-static Channels in Internet of Things
The National Natural Science Foundation of China (61379006), The National 863 Program of China (2015AA01A708), The Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61521003)
-
摘要: 針對(duì)物聯(lián)網(wǎng)準(zhǔn)靜態(tài)信道下密鑰生成速率低的問題,該文提出一種基于中繼節(jié)點(diǎn)協(xié)作的密鑰生成方法。首先,通信雙方通過信道估計(jì)獲得直達(dá)信道和部分中繼信道信息;然后,中繼節(jié)點(diǎn)采用網(wǎng)絡(luò)編碼技術(shù)參與協(xié)作,使得通信雙方獲取全部中繼信道信息;最后,通信雙方在直達(dá)信道上進(jìn)行密鑰協(xié)商,利用直達(dá)信道信息、中繼信道信息與協(xié)商信息共同生成相同的密鑰。安全性分析表明該方法能夠提高可達(dá)密鑰速率,并且隨著信噪比的提高,可達(dá)密鑰速率呈線性增長,趨于最優(yōu)值。蒙特卡洛仿真驗(yàn)證了理論分析的結(jié)果,并得出了增加中繼節(jié)點(diǎn)數(shù)量、選取信道變化幅度大的中繼節(jié)點(diǎn),可以進(jìn)一步提高可達(dá)密鑰速率。
-
關(guān)鍵詞:
- 物理層安全 /
- 密鑰生成 /
- 物聯(lián)網(wǎng) /
- 中繼協(xié)作
Abstract: A secret key generation scheme based on a cooperative relay is proposed to improve the generated secret key rate for quasi-static channels in Internet of things. Firstly, the two legitimate nodes send training sequences to estimate the direct channel information, respectively. After that the relay employs network coding technique to participate the cooperation, and assists the two legitimate nodes to obtain the relay channels information. Finally, the two legitimate nodes agree on a secret key from the direct and relay channels information using the direct channel without the help of the relay. Security analysis results show that the scheme can improve the achievable secret key rate, and the achievable key rate increases linearly with SNR, approaching the optimal rate. Monte Carlo simulation verifies the security analysis results, and obtains that increasing the relay nodes, selecting the relay with a larger variance channel can further improve the achievable secret key rate.-
Key words:
- Physical layer security /
- Secret key generation /
- Internet of things /
- Relay cooperation
-
SAHA H N, MANDAL A, and SINHA A. Recent trends in the Internet of Things[C]. IEEE Computing and Communication Workshop and Conference, Las Vegas, USA, 2017: 1-4. LINDQVIST U and NEUMANN P G. The future of the Internet of Things[J]. Communications of the ACM, 2017, 60(2): 26-30. doi: 10.1145/3029589. MAVROMOUSTAKIS C X, MASTORAKIS G, and BATALLA J M. Internet of Things (IoT) in 5G Mobile Technologies[M]. Berlin: Springer International Publishing, 2016: 127-227. SAMAILA M G, NETO M, FERNANDES D A B, et al. Security Challenges of the Internet of Things[M]. Berlin: Springer International Publishing, 2017: 53-82. LIU Y L, CHEN H H, and WANG L M. Physical layer security for next generation wireless networks: Theories, technologies, and challenges[J]. IEEE Communications Surveys Tutorials, 2017, 19(1): 347-376. doi: 10.1109/ COMST.2016.2598968. ZHANG J Q, TRUNG Q D, ALAN M, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016(4): 614-626. doi: 10.1109/ACCESS.2016.2521718. CASTEL T, TORRE P V, and ROGIER H. RSS-based secret key generation for indoor and outdoor WBANs using on-body sensor nodes[C]. International Conference on Military Communications and Information Systems, Brussels, Belgium, 2016: 1-5. ZHU X, XU F, NOVAK E, et al. Using wireless link dynamics to extract a secret key in vehicular scenarios[J]. IEEE Transactions on Mobile Computing, 2016, 16(7): 2065-2078. doi: 10.1109/TMC.2016.2557784. MADISEH M G, NEVILLE S W, and MCGUIRE M L. Applying beamforming to address temporal correlation in wireless channel characterization based secret key generation [J]. IEEE Transactions on Information Forensics Security, 2012, 7(4): 1278-1287. doi: 10.1109/TIFS.2012.2195176. HUANG P and WANG X. Fast secret key generation in static wireless networks: A virtual channel approach[C]. IEEE International Conference on Computer Communications, Turin, Italy, 2013: 2292-2300. CHEN D, QIN Z, MAO X, et al. SmokeGrenade: An efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1731-1745. doi: 10.1109/TIFS.2013.2278834. GOLLAKOTA S and KATABI D. Physical layer wireless security made fast and channel independent[C]. IEEE International Conference on Computer Communications, Shanghai, China, 2011: 1125-1133. MUKHERJEE A. Physical-layer security in the Internet of Things: Sensing and communication confidentiality under resource constraints[J]. Proceedings of the IEEE, 2015, 103(10): 1748-1761. doi: 10.1109/JPROC.2015.2466548. CSISZAR I and NARAYAN P. Common randomness and secret key generation with a helper[J]. IEEE Transactions on Information Theory, 2000, 46(2): 344-366. doi: 10.1109/18. 825796. TAKAYUKI S, HISATO I, and HIDEICHI S. Physical-layer secret key agreement in two-way wireless relaying systems[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 650-660. doi: 10.1109/TIFS.2011.2147314. LAI L, LIANG Y, and DU W. Cooperative key generation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1578-1588. doi: 10.1109/JSAC. 2012.120924. YE C, MATHUR S, REZNIK A, et al. Information- theoretically secret key generation for fading wireless channels[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 240-254. doi: 10.1109/TIFS.2010. 2043187. -
計(jì)量
- 文章訪問數(shù): 1372
- HTML全文瀏覽量: 190
- PDF下載量: 211
- 被引次數(shù): 0