基于壓縮感知的CFAR目標(biāo)檢測(cè)算法
doi: 10.11999/JEIT170382
基金項(xiàng)目:
國家自然科學(xué)基金委員會(huì)-中國工程物理研究院NSAF聯(lián)合基金(U1530126)
CFAR Target Detection Algorithm Based on Compressive Sensing
Funds:
The National Natural Science Foundation of China-China Academy of Engineering Physics Joint Foundation (NSAF) (U1530126)
-
摘要: 該文提出一種基于壓縮感知(Compressive Sensing, CS)的恒虛警率(Constant False Alarm Rate, CFAR)目標(biāo)檢測(cè)算法,首先分析了目標(biāo)在距離單元上具有稀疏特性,并構(gòu)造了目標(biāo)回波的稀疏字典,設(shè)計(jì)特定的測(cè)量矩陣以及基于CS的CFAR檢測(cè)結(jié)構(gòu),然后實(shí)現(xiàn)了對(duì)回波信號(hào)的壓縮測(cè)量和CFAR檢測(cè),無需對(duì)回波信號(hào)重構(gòu)。該文提出的算法具有很好的降噪性能并提高了檢測(cè)效率,可以對(duì)低信噪比、低信雜比信號(hào)成功檢測(cè)。仿真結(jié)果表明:當(dāng)信噪比為-14 dB,信雜比為-10 dB時(shí),該算法與傳統(tǒng)匹配濾波檢測(cè)算法相比,減少了一半數(shù)據(jù)運(yùn)算量,性能明顯優(yōu)于壓縮匹配濾波檢測(cè)算法。
-
關(guān)鍵詞:
- 目標(biāo)檢測(cè) /
- 恒虛警率 /
- 壓縮感知 /
- 測(cè)量矩陣
Abstract: A new Constant False Alarm Rate (CFAR) target detection algorithm is proposed based on Compressive Sensing (CS). Firstly, the sparsity of target in the distance dimension is analyzed and the sparse dictionary is constructed for the echo signal. Secondly, a certain measurement matrix and CFAR detection structure are designed based on CS. The proposed detector can detect sparse signals directly with high accuracy without any signal reconstruction. The proposed algorithm has a good noise reduction performance, which can detect low SNR and low Signal-to-Interference Ratio (SIR) signals successfully. Finally, computer simulation results verify that when SNR is equal to -14 dB and SIR is equal to -10 dB, the proposed detector can reduce the half measurements via compared with classical Matched Filter (MF) algorithm. Whats more, the performance of the proposed detector is better than CS MF algorithm.-
Key words:
- Target detection /
- CFAR /
- Compressive Sensing (CS) /
- Measurement matrix
-
LI Ying, ZHANG Gong, TAO Yu, et al. Target detection in compressive sensing based on step frequency radar[J]. Modern Radar, 2015, 37(9): 22-25. doi: 10.16592/j.cnki.10047859. 李瑩, 張弓, 陶宇, 等. 基于壓縮感知的步進(jìn)頻雷達(dá)目標(biāo)檢測(cè)算法[J]. 現(xiàn)代雷達(dá), 2015, 37(9): 22-25. doi: 10.16592/j.cnki. 10047859. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 2130. doi: 10.1109/MSP.2007.914731. 吳建宇, 徐海東, 王玨. 基于過完備字典稀疏表示的多通道腦電信號(hào)壓縮感知聯(lián)合重構(gòu)[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079. WU Jianyu, XU Haidong, and WANG Jue. A new joint reconstruction algorithm of compressed sensing for multichannel EEG signals based on over-complete dictionary approach[J]. Journal of Electronic Information Technology, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079. 岑翼剛, 岑麗輝. 基于峰值變換的信號(hào)稀疏表示及重建[J]. 電子與信息學(xué)報(bào), 2011, 33(2): 326-331. doi: 10.3724/SP.J. 1146.2010.00305. CEN Yigang and CEN Lihui. Sparse representation and reconstruction of signals based on the peak transform[J]. Journal of Electronic Information Technology, 2011, 33(2): 326-331. doi: 10.3724/SP.J.1146.2010.00305. ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414. doi: 10.1016./j. sigpro.2009.11.009. 王偉偉, 廖桂生, 朱圣棋, 等. 一種基于壓縮感知的地面運(yùn)動(dòng)目標(biāo)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2012, 34(8): 1872-1878. doi: 10.3724/SP.J.1146.2011.01285. WANG Weiwei, LIAO Guisheng, ZHU Shengqi, et al. A ground moving target indication method based on compressive sensing[J]. Journal of Electronic Information Technology, 2012, 34(8): 1872-1878. doi: 10.3724/SP.J.1146. 2011.01285. 趙瑞珍, 王若乾, 張鳳珍, 等. 分塊的有序范德蒙矩陣作為壓縮感知測(cè)量矩陣的研究[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860. ZHAO Ruizhen, WANG Ruoqian, ZHANG Fengzhen, et al. Research on the blocked ordered vandermonde matrix used as measurement matrix for compressed sensing[J]. Journal of Electronic Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860. 王明宇. 復(fù)雜環(huán)境下雷達(dá)CFAR檢測(cè)與分布式雷達(dá)CFAR檢測(cè)研究[D]. [博士論文], 西北工業(yè)大學(xué), 2001: 20-28. WANG Mingyu. Radar CFAR detection and distributed radar CFAR detection under complicated environments[D]. [Ph.D. dissertation], Northwestern Polytechnical University, 2001: 20-28. RAGHAVAN R S. Analysis of CA-CFAR processors for linear-law detection[J]. IEEE Transactions on Aerospace Electronic Systems, 1992, 28(3): 661-665. doi: 10.1109/7. 256288. ROHLING H. Radar CFAR threshold in clutter and multiple target situation[J]. IEEE Transactions on Aerospace Electronic Systems, 1983, 19(4): 608-621. doi: 10.1109/TAES. 1983.309350. 胡勤振, 蘇洪濤, 周生華, 等. 多基地雷達(dá)中雙門限CFAR檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2430-2436. doi: 10.11999/JEIT151163. HU Qinzhen, SU Hongtao, ZHOU Shenghua, et al. Double threshold CFAR detection for multisite radar[J]. Journal of Electronic Information Technology, 2016, 38(10): 2430-2436. doi: 10.11999/JEIT151163. 趙興剛, 王首勇. 一種基于KL分離度的改進(jìn)矩陣CFAR檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(4): 934-940. doi: 10.11999 /JEIT150711. ZHAO Xinggang and WANG Shouyong. An inproved matrix CFAR detection method base on KL divergence[J]. Journal of Electronic Information Technology. 2016, 38(4): 934-940. doi: 10.11999/JEIT150711. ANITORI L, ROSSUM W V, OTTEN M, et al. Compressive sensing radar: Simulations and experiments for target detection[C]. Signal Processing Conference, Marrakech, Morocco, 2014: 1-5. ANITORI L, ROSSUM W V, OTTEN M, et al. Compressive CFAR radar processing[C]. Compressive CFAR Radar Processing Tno, Repository, Bremen, Germany, 2013: 57-60. RAZAVI A, VALKAMA M, and CABRIC D. Compressive detection of random subspace signals[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4166-4179. doi: 10.1109/ TSP.2016.256.0132. HARIRI A and BABAIE M. Compressive detection of sparse signals in additive white gaussian noise without signal reconstruction[J]. Signal Processing, 2016, 131: 376-385. doi: 10.1016/j.sigpro.2016.08.020. 理查茲, 邢孟道, 王彤, 等. 雷達(dá)信號(hào)處理基礎(chǔ)[M]. 北京: 電子工業(yè)出版社, 2008: 117-147. MARK A. RICHARDS, XING Mengdao, WANG Tong, et al. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2008: 117-147. DAVENPORT M A, WAKIN M B, and BARANIUK R G. The compressive matched filter[R]. Rice University, Technical Report TREE-0610, 2006. -
計(jì)量
- 文章訪問數(shù): 1855
- HTML全文瀏覽量: 268
- PDF下載量: 368
- 被引次數(shù): 0