基于變量節(jié)點(diǎn)更新的交替方向乘子法 LDPC懲罰譯碼算法
doi: 10.11999/JEIT170358
-
1.
(武漢大學(xué)電子信息學(xué)院 武漢 430072)
-
2.
(華中師范大學(xué)物理科學(xué)與技術(shù)學(xué)院 武漢 430079)
國家自然科學(xué)基金(61501334),華中師范大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)(CCNU16A05028)
Alternating Direction Method of Multipliers LDPC Penalized Decoding Algorithm Based on Variable Node Update
-
1.
(School of Electronic Information, Wuhan University, Wuhan 430072, China)
-
2.
(College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China)
The National Natural Science Foundation of China (61501334), The Fundamental Research Funds for the Central Universities of CCNU (CCNU16A05028)
-
摘要: 基于交替方向乘子法(ADMM)的改進(jìn)懲罰函數(shù)LDPC譯碼算法能夠提升譯碼性能,但其所需優(yōu)化參數(shù)過多且性能提升有限。針對(duì)該問題,將該算法與其它帶有懲罰函數(shù)的譯碼算法比較后發(fā)現(xiàn),兩者的不同之處僅在于譯碼算法中變量節(jié)點(diǎn)的更新規(guī)則不同。因此,該文通過構(gòu)造一種新的變量節(jié)點(diǎn)的更新方法去減少優(yōu)化參數(shù)數(shù)目并提升譯碼性能。實(shí)驗(yàn)仿真表明,相較于原有算法,該文所提算法有效減少了所需優(yōu)化的參數(shù)數(shù)目,此外,所提算法的平均迭代次數(shù)更少且能實(shí)現(xiàn)約0.1 dB的性能提升。
-
關(guān)鍵詞:
- LDPC /
- 交替方向乘子法 /
- 懲罰函數(shù) /
- 變量節(jié)點(diǎn)更新
Abstract: The LDPC decoding algorithm with improved penalty function can improve the performance of decoding algorithm based on Alternating Direction Method of Multipliers (ADMM), but it has too many parameters to be optimized and the performance improvement is limited. For this problem, by comparing it with other decoding algorithms with penalty function, it is found that the difference between them is only the update rules of variable nodes in the decoding algorithm. Therefore, a new update method for variable nodes is proposed in this paper to reduce the number of parameters and improve the decoding performance. The simulation results show that, compared with the original decoding algorithm, the decoding algorithm in this paper reduces the parameters which need to be optimized, in addition, the average number of iterations of the algorithm is less and the algorithm can achieve about 0.1 dB performance improvement. -
FELDMAN J, WAINWRIGHT M J, and KARGER D R. Using linear programming to decode binary linear codes[J]. IEEE Transactions on Information Theory, 2005, 51(3): 954-972. doi: 10.1109/TIT.2004.842696. CHILAPPAGARI S K, CHERTKOV M, and VASIC B. An efficient instanton search algorithm for LP decoding of LDPC codes over the BSC[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4417-4426. doi: 10.1109/TIT.2011. 2146670. BURSHTEIN D and GOLDENBERG I. Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7386-7402. doi: 10.1109/ TIT.2011.2162224. FELDMAN J, MALKIN T, SERVEDIO R A, et al. LP decoding corrects a constant fraction of errors[J]. IEEE Transactions on Information Theory, 2007, 53(1): 82-89. doi: 10.1109/TIT.2006.887523. BAZZI L, GHAZI B, and URBANKE R L. Linear programming decoding of spatially coupled codes[J]. IEEE Transactions on Information Theory, 2014, 60(8): 4677-4698. doi: 10.1109/TIT.2014.2325903. BARMAN S, LIU Xishuo, DRAPER S C, et al. Decomposition methods for large scale LP decoding[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7870-7886. WEI Haoyuan, JIAO Xiaopeng, and MU Jianjun. Reduced- complexity linear programming decoding based on ADMM for LDPC codes[J]. IEEE Communication Letters, 2015, 19(6): 909-912. doi: 10.1109/LCOMM.2015.2418261. JIAO Xiaopeng, MU Jianjun, HE Yucheng, et al. Efficient ADMM decoding of LDPC codes using look-up tables[J]. IEEE Transactions on Communications, 2017, 19(4): 271-285. doi: 10.1109/TCOMM.2017.2659733. DEBBABI I, GAL B L, KHOUJA N, et al. Fast converging ADMM penalized algorithm for LDPC decoding[J]. IEEE Communication Letters, 2016, 20(4): 648-651. doi: 10.1109 /LCOMM.2016.2531040. DEBBABI I, GAL B L, KHOUJA N, et al. Comparison of different schedulings for the ADMM based LDPC decoding[J]. International Symposium on Turbo Codes Iterative Information Processing, 2016, 20(4): 51-55. doi: 10.1109/ ISTC.2016.7593075. LIU Xishuo and DRAPER S C. The ADMM penalized decoder for LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(6): 2966-2984. doi: 10.1109/ TIT.2016.2555847. LIU Xishuo. ADMM decoding of LDPC and multipermutation codes: from geometries to algorithms[D]. [Ph.D. dissertation], University of Wisconsin, 2015. JIAO Xiaopeng, WEI Haoyuan, and MU Jianjun. Improved ADMM penalized decoder for irregular low-density parity-check codes[J]. IEEE Communication Letters, 2015, 19(6): 913-916. doi: 10.1109/LCOMM.2015.2421445. WANG Biao, MU Jianjun, JIAO Xiaopeng, et al. Improved penalty functions of ADMM decoder for LDPC codes[J]. IEEE Communication Letters, 2016, 21(99): 234-237. doi: 10.1109/LCOMM.2016.2627575. WASSON M and DRAPER S C. Hardware based projection onto the parity polytope and probability simplex[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2015: 1015-1020. ZHANG Xiaojie and SIEGEL P H. Adaptive cut generation algorithm for improved linear programming decoding of binary linear codes[J]. IEEE Transactions on Information Theory, 2012, 58(10): 6581-6594. doi: 10.1109/TIT.2012. 2204955. STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328. -
計(jì)量
- 文章訪問數(shù): 1573
- HTML全文瀏覽量: 228
- PDF下載量: 193
- 被引次數(shù): 0