協(xié)同信道空時優(yōu)化MIMO無線傳輸系統(tǒng)
doi: 10.11999/JEIT170321
基金項目:
高等學(xué)校博士學(xué)科點專項科研基金(20130191110006)
Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization
Funds:
University Doctoral Research Foundation of China (20130191110006)
-
摘要: 該文提出一種基于虛擬信道的空時優(yōu)化多輸入多輸出(MIMO)無線傳輸系統(tǒng)。通過在發(fā)射端產(chǎn)生不同的空時虛擬信道,與實際空間無線信道級聯(lián),構(gòu)成系統(tǒng)的整體傳輸信道即協(xié)同空分信道。系統(tǒng)可以根據(jù)接收端的反饋信息采用模擬退火算法來優(yōu)化虛擬信道,改善誤碼率(BER)性能。利用虛擬信道方法,可以使一根MIMO發(fā)射天線在同一時間、同一頻段傳輸多路疊加合并后的數(shù)據(jù)信號,從而可以使發(fā)射的不同數(shù)據(jù)信號的總路數(shù)超過發(fā)射天線的數(shù)量,突破了現(xiàn)有MIMO系統(tǒng)在同一時間、同一頻段最多只能發(fā)射與發(fā)射天線數(shù)量相等的不同數(shù)據(jù)信號的傳統(tǒng)方式,可以顯著提高系統(tǒng)的頻譜效率。仿真結(jié)果和基于ZC706和AD9361硬件平臺的微波暗室實際測試結(jié)果充分驗證了新MIMO系統(tǒng)的有效性。
-
關(guān)鍵詞:
- MIMO系統(tǒng) /
- 虛擬信道 /
- 模擬退火算法 /
- 誤碼率 /
- 頻譜效率
Abstract: A space-time optimized Multiple-Input Multiple-Output (MIMO) wireless transmission system based on virtual channel method is proposed. At the transmitter, various space-time virtual channels are generated that are connected with the actual space wireless channels to form the cooperative space division channels. According to the feedback information from the receiver, the Bit Error Rate (BER) can be significantly improved by using the simulated annealing algorithm to optimize the virtual channels. Morever, by using the virtual channel method, it allows one MIMO antenna to transmit multiple superposed data streams in one frequency band at the same time, therefore it can transmit more number of different data streams than the number of transmit antennas, breaking the conventional way that the number of different data streams to be transmitted is equal to the number of transmit antennas. Thus, the proposed MIMO system can significantly improve the spectral efficiency. Simulation results and experimental test results based on ZC706 and AD9361 hardware platforms in microwave anechoic chamber fully demonstrate the effectiveness of the proposed MIMO system. -
ZHANG Q, JIN S, MCKAY M, et al. Power allocation schemes for multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 5941-5955. doi: 10.1109/TWC.2015.2444856. HONG X M, WANG C X, THOMPSON J, et al. On spacefrequency correlation of UWB MIMO channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4201-4213. doi: 10.1109/TVT. 2010.2075947. LIU Y, AI B, and CHEN B H. Impact of mutual coupling on LTE-R MIMO capacity for antenna array configurations in high speed railway scenario[C]. IEEE Vehicular Technology Conference, Nanjing, China, 2016: 1-5. NTT DOCOMO, Inc. 5G radio access: Requirement, concept and techniques[R]. 5G White Paper, Tokyo, Japan, 2014. RIMAL B P, VAN D P, and MAIER M. Mobile edge computing empowered fiber-wireless access networks in the 5G era[J]. IEEE Communications Magazine, 2017, 55(2): 192-200. doi: 10.1109 /MCOM.2017.1600156CM. AL-ABBASI Z Q and SO D K C. Power allocation for sum rate maximization in non-orthogonal multiple access system [C]. Personal, Indoor and Mobile Radio Communications, Hong Kong, 2015: 1649-1653. DO N T, COSTA D B D, DUONG T Q, et al. A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT[J]. IEEE Communications Letters, 2017, 21(3): 664-667. doi: 10.1109/LCOMM.2016.2631606. DING Z G, DAI H Y, and POOR H V. Relay selection for cooperative NOMA[J]. IEEE Wireless Communications Letters, 2016, 5(4): 416-419. doi: 10.1109/LWC.2016. 2574709. ALWAKEEL A S, MEHANA A H, and GHONEIM A. Pilot hopping in massive MIMO systems with MMSE channel estimation[C]. International Conference on Computing, Networking and Communications, Silicon Valley, CA, USA, 2017: 298-302. UPADHYA K, VOROBYOV S A, and VEHKAPERA M. Superimposed pilots are superior for mitigating pilot contamination in massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2917-2932. doi: 10.1109/TSP. 2017.2675859. SONG N, YANG T, and SUN H. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550-554. doi: 10.1109/LSP.2017.2681689. SUN Q, HAN S F, PAN Z G, et al. On the ergodic capacity of MIMO NOMA systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 405-408. doi: 10.1109/LWC.2015. 2426709. SUN R J, WANG Y, WANG X S, et al. Transceiver design for cooperative nonorthogonal multiple access systems with wireless energy transfer[J]. IET Communications, 2016, 10(15): 1947-1955. doi: 10.1049/iet-com.2016.0120. DIAMANYOULAKIS P D, PAPPI K N, DING Z G, et al. Wireless-powered communications with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8422-8436. doi: 10.1109/ TWC.2016.2614937. SHIEH S L, LIN C H, HUANG Y C, et al. On gray labeling for downlink non-orthogonal multiple access without SIC[J]. IEEE Communications Letters, 2016, 20(9): 1721-1724. doi: 10.1109/LCOMM.2016.2584040. WINTERS J H. On the capacity of radio communication systems with diversity in a rayleigh fading environment[J]. IEEE Journal on Selected Areas in Communications, 1987, SAC-5(5): 871-878. doi: 10.1109/JSAC.1987.1146600. 王青, 肖懷鐵, 張安. 基于模擬退火算法的MIMO雷達(dá)稀疏線陣設(shè)計[J]. 計算機工程與應(yīng)用, 2011, 47(8S): 272-276. WANG Q, XIAO H T, and ZHANG A. MIMO radar sparse linear array design based on simulated annealing algorithm [J]. Computer Engineering and Applications, 2011, 47(8S): 272-276. 田景文, 高美娟. 人工神經(jīng)網(wǎng)絡(luò)算法研究及應(yīng)用[M]. 北京: 北京理工大學(xué)出版社, 2006: 182-190. -
計量
- 文章訪問數(shù): 1447
- HTML全文瀏覽量: 176
- PDF下載量: 187
- 被引次數(shù): 0