面向全同態(tài)加密的有限域FFT算法FPGA設(shè)計(jì)
doi: 10.11999/JEIT170312
-
1.
(南通大學(xué)電子信息學(xué)院 南通 226019) ②(江蘇省專用集成電路設(shè)計(jì)重點(diǎn)實(shí)驗(yàn)室 南通 226019)
國家自然科學(xué)基金(61571246),南通大學(xué)杏林學(xué)院自然科學(xué)基金(13010538)
Design of Finite Field FFT for Fully Homomorphic Encryption Based on FPGA
-
1.
(School of Electronic Information, Nantong University, Nantong 226019, China)
The National Natural Science Foundation of China (61571246), The Natural Science Foundation of Xinglin College of Nantong University (13010538)
-
摘要: 大數(shù)乘法是全同態(tài)加密算法中一個(gè)不可或缺的單元模塊,也是其中耗時(shí)最多的模塊,設(shè)計(jì)一個(gè)性能優(yōu)良的大數(shù)乘法器有助于推進(jìn)全同態(tài)加密的實(shí)用化進(jìn)程。針對SSA大數(shù)乘法器的實(shí)現(xiàn)需求,該文采用可綜合Verilog HDL語言完成了一個(gè)1624 bit有限域FFT算法的FPGA設(shè)計(jì),通過構(gòu)建樹型大數(shù)求和單元和并行化處理方法有效提高了FFT算法的速度。與VIM編譯環(huán)境下的系統(tǒng)級仿真結(jié)果比較,驗(yàn)證了有限域FFT算法FPGA設(shè)計(jì)的正確性。
-
關(guān)鍵詞:
- 全同態(tài)加密 /
- 大數(shù)乘法 /
- 有限域快速傅里葉變換 /
- 現(xiàn)場可編程門陣列
Abstract: Large multiplier is an indispensable module in fully homomorphic encryption, while is also the most time-consuming module. Therefore, design of a large multiplier with good performance is help to promote the practical process of fully homomorphic encryption. Aimed at the demand of SSA (Sch?nhage-Strassen Algorithm) large multiplier, a 1624 bit finite field FFT based on FPGA is designed by using Verilog HDL language. By constructing the tree type large sum unit and using parallel processing method, the speed of FFT algorithm is improved effectively. And its correctness is proved by comparing with the system level simulation results in VIM compiler environment. -
光焱, 祝躍飛, 顧純祥, 等. 一種針對全同態(tài)加密體制的密鑰恢復(fù)攻擊[J]. 電子與信息學(xué)報(bào), 2013, 35(12): 2999-3004. doi: 10.3724/SP.J.1146.2013.00300. GUANG Yan, ZHU Yuefei, GU Chunxiang, et al. A key recovery attack on fully homomorphic encryption scheme[J]. Jounal of Electronics Information Technology, 2013, 35(12): 2999-3004. doi: 10.3724/SP.J.1146.2013.00300. CAO Xiaolin and MOORE C. Optimised multiplication architectures for accelerating fully homomorphic encryption [J]. IEEE Transactions on Computers, 2016, 65(9): 2794-2806. doi: 10.1109/TC.2015.2498606. 劉明潔, 王安. 全同態(tài)加密研究動態(tài)及其應(yīng)用概述[J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 51(12): 2593-2603. doi; 10.7544/issn100- 1239.2014.20131168. LIU Mingjie and WANG An. The homomorphic encryption research dynamic overview and its application[J]. Computer Research and Development, 2014, 51(12): 2593-2603. doi: 10.7544/issn100-1239.2014.20131168. 陳智罡, 石亞峰, 宋新霞. 全同態(tài)加密具體安全參數(shù)分析[J].密碼學(xué)報(bào), 2016, 3(5): 480-491. CHEN Zhigang, SHI Yafeng, and SONG Xinxia. Estimating concert security parameters of fully homomorphic encryption [J]. Journal of Cryptologic Research, 2016, 3(5): 480-491. GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The 41st ACM Symposium on Theory of Computing Proceedings, Bethesda, Maryland, USA, 2009: 169-178. 呂海峰, 丁勇, 代洪艷, 等, LWE上的全同態(tài)加密方案研究[J]. 信息網(wǎng)絡(luò)安全, 2015, (1): 32-38. doi: 10.3969/j.issn.1671-1122. 2015.01.006. L Haifeng, DING Yong, DAI Hongyan, et al. Survey on LWE-based fully homomorphic encryption scheme[J]. Net Inforamtion Security, 2015, (1): 32-38. doi: 10.3969/j.issn. 1671-1122.2015.01.006. GENTRY C and HALEVI S. Implementing Gentrys fully homomorphic encryption scheme[C]. Annual International Conference on the Theory and Applications of Cryptographic, Tallinn, Estonia, 2011: 129-148. doi: 10.1007/978-3-642- 20465-4_9. GENTRY C. A fully homomorphic encryption scheme[D]. [Ph.D. dissertation], Stanford University, 2009. 呂金萍. 基于LWE的全同態(tài)加密的設(shè)計(jì)與研究[D]. [碩士論文], 杭州電子科技大學(xué), 2014. L Jinping. Design and research of FHE based on LWE[D]. [Master dissertation], Hanzhou Electronic Science and Technology University. 2014. 吳曉園. 基于格的全同態(tài)加密方案的研究與設(shè)計(jì)[D]. [碩士論文], 西安電子科技大學(xué), 2012. WU Xiaoyuan. Study and design of fully homomorphic encryption scheme based on case[D]. [Master dissertation], Xidian University, 2012. WANG W, HU Y, CHEN L, et al. Accelerating fully homomorphic encryption using GPU[C]. IEEE Conference on High Performance Extreme Computing, Waltham, MA, USA, 2012: 1-5. doi: 10.1109/HPEC.2012.6408660. EMMART N and WEEMS C. High precision integer addition, subtraction and multiplication with a graphics processing unit[J]. Parallel Processing. Letters, 2010, 20(4): 293-306. WANG Wei, HUANG Xinming, and EMMART N. VLSI desgn of a large-number multiplier for FHE[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(9): 1879-1887. doi: 10.1109/TVLSI.2013.2281786. SCHNHAGE A and STRASSEN V. Schnelle multiplikation grosser zahlen[J]. Computing, 1971, 7(3): 281-292. doi: 10. 1007/BF02242355. 占席春, 蔡費(fèi)楊, 王偉. 多路并行FFT算法的FPGA實(shí)現(xiàn)技術(shù)[J]. 現(xiàn)代電子技術(shù), 2015, 38(19): 35-39. ZHAN Xichun, CAI Feiyang, and WANG Wei. FPGA-based implementation technologies of multi-channel parallel FFT algorithm[J]. Modern Electronics Tchnique, 2015, 38(19): 35-39. SAID Boussakta. Generalized new mersenne number transforms[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2640-2647. doi: 10.1109/TSP.2012.2186131. EMMART N and WEEMS C. High precision integer multiplication with a GPU using Strassens algorithm with multiple FFT sizes[J]. Parallel Processing Letters, 2011, 21(3): 293-306. doi: 10.1109/IPDPS.2011.336. -
計(jì)量
- 文章訪問數(shù): 2393
- HTML全文瀏覽量: 320
- PDF下載量: 348
- 被引次數(shù): 0