基于改進(jìn)型繞射非局部邊界條件的三維拋物方程分解模型預(yù)測(cè)電波傳播
doi: 10.11999/JEIT170311
基金項(xiàng)目:
國(guó)家科技支撐計(jì)劃(2015BAK05B01)
Combination of the Improved Diffraction Nonlocal Boundary Condition and Three-dimensional Parabolic Equation Decomposed Model for Predicting Radiowave Propagation
Funds:
The National Key Technology Support Program (2015BAK05B01)
-
摘要: 繞射非局部邊界條件是基于有限差分法求解拋物方程時(shí)使用的一種透明邊界條件。它的最大優(yōu)點(diǎn)是只用一層網(wǎng)格就能很好完成波地吸收,而缺點(diǎn)是由于涉及到卷積積分的計(jì)算,因此計(jì)算速度低。針對(duì)此問(wèn)題,該文首先引入可以加快其計(jì)算速度的遞歸卷積法和矢量擬合法。這里把結(jié)合了這兩種數(shù)值計(jì)算方法的繞射非局部邊界條件稱(chēng)為改進(jìn)型繞射非局部邊界條件。在此基礎(chǔ)之上,提出將這種改進(jìn)型的繞射非局部邊界條件應(yīng)用到3維拋物方程(3DPE)分解模型中。最后通過(guò)數(shù)值計(jì)算,證明了改性型繞射非局部邊界條件3DPE分解模型在計(jì)算精度和計(jì)算速度方面的優(yōu)勢(shì)。
-
關(guān)鍵詞:
- 電波傳播預(yù)測(cè) /
- 繞射非局部邊界條件 /
- 3維拋物方程
Abstract: Diffraction nonlocal boundary condition is one kind of the transparent boundary condition which is used in the Finite Difference (FD) Parabolic Equation (PE). The biggest advantage of the diffraction nonlocal boundary condition is that it can absorb the wave completely by using of one layer of grid. However, the computation speed is low because of the time consuming spatial convolution integrals. To solve this problem, the recursive convolution and vector fitting method are introduced to accelerate the computational speed. The diffraction nonlocal boundary combined with these two kinds of methods is called as improved diffraction nonlocal boundary condition. Based on the improved nonlocal boundary condition, it is applied to Three-Dimensional Parabolic Equation (3DPE) decomposed model. Numeric computation results demonstrate the computational accuracy and the speed of this three-dimensional parabolic equation decomposed model combined with the improved diffraction nonlocal boundary condition. -
JANASWAMY R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716-1728. doi: 10.1109/TAP.2003. 815415. SILVA M A N, COSTA E, and LINIGER M. Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2138-2143. doi: 10.1109/TAP.2012.2186227. ZHANG X and SARRIS C D. Error analysis and comparative study of numerical methods for the parabolic equation epplied to tunnel propagation modeling[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3025-3034. doi: 10.1109/TAP.2015.2421974. AHDAB Z E and AKLEMAN F. Radiowave propagation pnalysis with a bidirectional three-dimensional vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1958-1966. doi: 10.1109/TAP.2017.2670321. ZELLEY C A and CONSTANTINOU C C. A three- dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(10): 1586-1596. doi: 10.1109/8.805904. LU G, WANG R, CAO Z, et al. A decomposition method for computing radiowave propagation loss using three- dimensional parabolic equation[J]. Progress in Electromagnetics Research M, 2015, 44: 183-189. doi: 10.2528 /PIERM15092005. KUTTLER J R and DOCKERY G D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere[J]. Radio Science, 1991, 26(2): 381-393. doi: 10.1029/91RS00109. ZHANG P, BAI L, WU Z, et al. Effect of window function on absorbing layers top boundary in parabolic equation[C]. IEEE 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014: 849-852. BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/ jcph.1994.1159. MARCUS S W. A hybrid (finite difference-surface Green,s function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1451-1458. doi: 10.1109/8.204735. SONG G H. Transparent boundary conditions for beam- propagation analysis from the Greens function method[J]. Journal of the Optical Society of America A, 1993, 10(5): 896-904. doi: 10.1364/JOSAA.10.000896. ZHANG P, BAI L, WU Z, et al. Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones[J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 31-44. doi: 10.1109/MAP.2016.2541620. MIAS C. Fast computation of the nonlocal boundary condition in finite difference parabolic equation radiowave propagation simulations[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1699-1705. doi: 10.1109/TAP. 2008.923341. LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IET, 2000: 116-138. ZHANG X and SARRIS C. A gaussian beam approximation approach for embedding antennas into vector parabolic equation based wireless channel propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1301-1310. doi: 10.1109/TAP.2016.2647589. LI L, LIN L K, WU Z S, et al. Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J]. IET Microwaves, Antennas Propagation, 2016, 10(6): 686-691. doi: 10.1049/iet-map.2015.0293. -
計(jì)量
- 文章訪問(wèn)數(shù): 973
- HTML全文瀏覽量: 174
- PDF下載量: 140
- 被引次數(shù): 0