Study on Cooperative Spectrum Sensing Algorithm Based on Random Matrix Non-asymptotic Spectral Theory
Funds:
The National Natural Science Foundation of China (61201177)
-
摘要: 將隨機(jī)矩陣的非漸近譜理論應(yīng)用到協(xié)作頻譜感知中,對(duì)接收信號(hào)樣本協(xié)方差矩陣的最大特征值和最小特征值進(jìn)行分析,該文提出一種精確的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference, EMMED)的協(xié)作感知算法。對(duì)于任意給定的協(xié)作用戶個(gè)數(shù)K和采樣點(diǎn)數(shù)N,首先推導(dǎo)了最大最小特征值之差的精確概率密度函數(shù)(Probability Density Function, PDF)和累積分布函數(shù)(Cumulative Distribution Function, CDF),然后利用該分布函數(shù)設(shè)計(jì)了所提算法的判決閾值。理論分析表明,EMMED算法的判決閾值較已有的漸進(jìn)最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference, AMMED)檢測(cè)更為精確,算法無需主用戶信號(hào)特征并且能夠?qū)乖肼暡淮_定度影響。仿真結(jié)果表明,存在噪聲不確定度的感知環(huán)境下,EMMED算法較已有的精確最大特征值(Exact Maximum Eigenvalue, EME)和EMMER等頻譜感知算法具有更好的檢測(cè)性能。Abstract: The non-asymptotic spectral theory of random matrix is applied to cooperative spectrum sensing, the maximum eigenvalue and the minimum eigenvalue of the sampled signal covariance matrix are analyzed and an Exact Maximum Minimum Eigenvalues Difference (EMMED) algorithm is proposed. For any given numbers of cooperative users K and sampling points N, the exact Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of the difference between the maximum and minimum eigenvalues are derived. Then, an accurate decision threshold is designed by using the distribution function. Theoretical analysis shows, the EMMED algorithm has the characteristics that the decision threshold is more accurate than the existing Asymptotic Maximum Minimum Eigenvalue Difference (AMMED) algorithm, without the characteristics of the main user signal and not affected by noise uncertainty. In addition, the simulation results show that the EMMED algorithm has better detection performance than the existing Exact Maximum Eigenvalue (EME) and EMMER algorithms in the real sensing environment with noisy uncertainty.
-
KHATTAB A and BAYOUMI M A. An overview of IEEE standardization efforts for cognitive radio networks[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, 2015: 982-985. doi: 10.1109/ ISCAS.2015.7168800. OH S W, MA Y, PEH E, et al. Introduction to Cognitive Radio and Television White Space[M]. Hoboken, NJ,USA, John Wiley Sons, Inc., 2016: 1-22. doi: 10.1002/ 9781119110491.ch1. SHARMA S K, BOGALE T E, CHATZINOTAS S, et al. Cognitive radio techniques under practical imperfections: A survey[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 1858-1884. doi: 10.1109/COMST.2015.2452414. 彌寅, 盧光躍. 基于特征值極限分布的合作頻譜感知算法[J]. 通信學(xué)報(bào), 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x. 2015010. MI Yin and LU Guangyue. Cooperative spectrum sensing algorithm based on limiting eigenvalue distribution[J]. Journal on Communications, 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x.2015010. TAHERPOUR A, NASIRI-KENARI M, and GAZOR S. Multiple antenna spectrum sensing in cognitive radios[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 814-823. doi: 10.1109/TWC.2009.02.090385. CARDOSO L S, DEBBAH M, BIANCHI P, et al. Cooperative spectrum sensing using random matrix theory [C]. 2008 3rd International Symposium on Wireless Pervasive Computing, Santorini, 2008: 334-338. doi: 10.1109/ISWPC. 2008.4556225. ZENG Y, KOH C L, and LIANG Y C. Maximum eigenvalue detection: Theory and application[C]. 2008 IEEE International Conference on Communications, Beijing, 2008: 4160-4164. doi: 10.1109/ICC.2008.781. ZENG Y and LIANG Y C. Eigenvalue based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/ TCOMM.2009.06.070402. 王穎喜, 盧光躍. 基于最大最小特征值之差的頻譜感知技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434. WANG Yingxi and LU Guangyue. DMM based spectrum sensing method for cognitive radio systems[J]. Journal of Electronics Information Technology, 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434. ZANELLA A, CHIANI M, and WIN M Z. On the marginal distribution of the eigenvalues of Wishart matrices[J]. IEEE Transactions on Communications, 2009, 57(4): 1050-1060. doi: 10.1109/TCOMM.2009.04.070143. PENNA F, GARELLO R, FIGLIOLI D, et al. Exact non- asymptotic threshold for eigenvalue-based spectrum sensing[C]. 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Hannover, 2009: 1-5. doi: 10.1109/CROWNCOM.2009. 5189008. RATNARAJAH T, ZHONG C, KORTUN A, et al. Complex random matrices and multiple-antenna spectrum sensing[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 3848-3851. doi: 10.1109/ICASSP.2011.5947191. CHATZINOTAS S, SHARMA S K, and OTTERSTEN B. Asymptotic analysis of eigenvalue-based blind Spectrum Sensing techniques[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, 2013: 4464-4468. doi: 10.1109/ICASSP.2013.6638504. RATNARAJAH T, VAILLANCOURT R, and ALVO M. Eigenvalues and condition numbers of complex random matrices[J]. SIAM Journal on Matrix Analysis Applications, 2005, 26(2): 441-456. doi: 10.1137/S089547980342204X. CHIANI M. On the probability that all eigenvalues of Gaussian and Wishart random matrices lie within an interval[J]. IEEE Transactions on Information Theory, 2017, 63(7): 4521-4531. doi: 10.1109/TIT.2017.2694846. TRACY C A and WIDOM H. On orthogonal and symplectic matrix ensembles[J]. Communications in Mathematical Physics, 1996, 177(3): 727-754. doi: 10.1007/BF02099545. 劉寧, 史浩山, 劉利平, 等. 基于隨機(jī)矩陣的新型頻譜盲感知方法[J]. 西北工業(yè)大學(xué)學(xué)報(bào), 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013. LIU Ning, SHI Haoshan, LIU Liping, et al. A novel blind spectrum sensing algorithm based on random matrix[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013. CHIANI M. Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution[J]. Journal of Multivariate Analysis, 2014, 129: 69-81. doi: 10. /j.1016jmva.2014.04.002. -
計(jì)量
- 文章訪問數(shù): 1315
- HTML全文瀏覽量: 130
- PDF下載量: 212
- 被引次數(shù): 0