一種K-means改進(jìn)算法的軟擴(kuò)頻信號(hào)偽碼序列盲估計(jì)
doi: 10.11999/JEIT170306
國(guó)家自然科學(xué)基金(61671095, 61371164),信號(hào)與信息處理重慶市市級(jí)重點(diǎn)實(shí)驗(yàn)室建設(shè)項(xiàng)目(CSTC2009CA2003),重慶市教育委員會(huì)科研項(xiàng)目(KJ130524, KJ1600427, KJ1600429)
Blind Estimation PN Sequence in Soft Spread Spectrum Signal of Improved K-means Algorithm
The National Natural Science Foundation of China (61671095, 61371164), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009 CA2003), The Research Project of Chongqing Educational Commission (KJ130524, KJ1600427, KJ1600429)
-
摘要: 針對(duì)軟擴(kuò)頻信號(hào)因采用了編碼技術(shù)使得偽碼序列難以估計(jì)的問(wèn)題,該文提出一種基于K-means聚類改進(jìn)的軟擴(kuò)頻信號(hào)偽碼序列盲估計(jì)方法。該方法首先以單倍偽碼周期的窗長(zhǎng)對(duì)接收信號(hào)進(jìn)行數(shù)據(jù)分段以構(gòu)造觀測(cè)數(shù)據(jù)矩陣,其次利用相似測(cè)度的理論從觀測(cè)數(shù)據(jù)中尋找出K-means算法最優(yōu)的初始聚類中心點(diǎn),然后通過(guò)搜索平均輪廓系數(shù)(Silhouette Coefficient, SC)最大的絕對(duì)值以完成偽碼集合規(guī)模數(shù)的估計(jì),最后找到估計(jì)的偽碼集合規(guī)模數(shù)所對(duì)應(yīng)的聚類中心點(diǎn)集合,進(jìn)一步完成對(duì)軟擴(kuò)頻信號(hào)偽碼序列的盲估計(jì)。通過(guò)仿真實(shí)驗(yàn)表明,在偽碼序列估計(jì)錯(cuò)誤概率低于0.1的情況下,該文方法比未改進(jìn)方法提高信噪比約4 dB;而且在同一條件下,該文方法對(duì)信號(hào)的盲解擴(kuò)性能優(yōu)于未改進(jìn)的方法。
-
關(guān)鍵詞:
- 軟擴(kuò)頻信號(hào) /
- 偽碼序列 /
- K-means聚類 /
- 盲估計(jì)
Abstract: For the problem of the soft spread spectrum signal Pseudo-Noise (PN) sequence is difficult to estimate by using the coding technology, a blind estimation PN sequence method of soft spread spectrum signal is proposed based on improved K-means algorithm. Firstly, the received signal is divided into continuous non-overlapping temporal vectors according to one period of PN sequence to construct observation data matrix. Secondly, the similarity measure theory is applied to find out the optimal initial clustering center point of K-means algorithm from the observed matrix. Then the number of scale of PN sequence can be estimated by searching for the maximum absolute value of the average Silhouette Coefficient (SC). Finally, the estimated clustering center point corresponding to the number of scale of PN sequence is found, the blind estimation PN sequence of the soft spread spectrum signal is further completed. The simulation results show that the proposed method improves the Signal-to-Noise Ratio (SNR) about 4 dB compared to the traditional method under the condition of the estimation error probability of PN sequence is less than 0.1. Moreover, the blind dispreading performance is also better than unmodified method under the same condition.-
Key words:
- Soft spread spectrum /
- Pseudo Noise (PN) sequence /
- K-means clustering /
- Blind estimation
-
TIAN Ricai and CHI Yonggang. Spread Spectrum Communication[M]. 2nd Ed. Beijing: Tsinghua University Press, 2014: 1-5. 田日才, 遲永鋼. 擴(kuò)頻通信[M]. 第2版, 北京: 清華大學(xué)出版社, 2014: 1-5. PURSLEY M B and ROYSTER T C. High-rate direct- sequence spread spectrum with error control coding[J]. IEEE Transactions on Communications, 2006, 54(9): 1693-1702. doi: 10.1109/TCOMM.2006.881256. 周佳晶, 唐友喜. JTIDS擴(kuò)頻序列的估計(jì)[J]. 電子科技大學(xué)學(xué)報(bào), 2007, 36(5): 1054-1056. ZHOU Jiajing and TANG Youxi. Spread spectrum sequence estimation for JTIDS[J]. Journal of University of Electronic Science and Technology of China, 2007, 36(5): 1054-1056. 沈斌, 王建新. 窄帶干擾條件下含有未知載頻的直擴(kuò)信號(hào)的偽碼序列估計(jì)[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1556-1561. doi: 10.11999/JEIT141322. SHEN Bin and WANG Jianxin. Estimation of PN sequence in DSSS signals with unknown carrier frequency under narrow band interferences[J]. Journal of Electronics Information Technology, 2015, 37(7): 1556-1561. doi: 10.11999/JEIT141322. 任嘯天, 徐暉, 黃知濤, 等. 短碼DS-SS信號(hào)擴(kuò)頻序列及信息序列聯(lián)合盲估計(jì)方法[J]. 通信學(xué)報(bào), 2012, 33(4): 169-175. doi: 10.3969/j.issn.1000-436X.2012.04.023. REN Xiaotian, XU Hui, HUANG Zhitao, et al. Joint blinding estimation of the spread-spectrum sequence and information sequence for short-code DS-SS signal[J]. Journal on Communications, 2012, 33(4): 169-175. doi: 10.3969/j.issn. 1000-436X.2012.04.023. 張?zhí)祢U, 趙軍桃, 江曉磊. 基于多主分量神經(jīng)網(wǎng)絡(luò)的同步DS- CDMA偽碼盲估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(11): 2638-2647. doi: 10.3969/j.issn.1001-506X.2016.11.27. ZHANG Tianqi, ZHAO Juntao, and JIANG Xiaolei. PN code sequence blind estimate of synchronous DS-CDMA based on multi-principal component neural network[J]. Systems Engineering and Electronics, 2016, 38(11): 2638-2647. doi: 10.3969/j.issn.1001-506X.2016.11.27. 張?zhí)祢U, 強(qiáng)幸子, 馬寶澤, 等. 基于最小二乘的同步多用戶非周期長(zhǎng)碼直擴(kuò)信號(hào)擴(kuò)頻序列估計(jì)[J]. 電波科學(xué)學(xué)報(bào), 2016, 31(6): 1113-1123. doi: 10.13443/j.cjors.2016030201. ZHANG Tianqi, QIANG Xingzi, MA Baoze, et al. Estimation of the spread spectrum sequence for synchronous multi-user a periodic long-code DSSS signals based on least squares[J]. Chinese Journal of Radio Science, 2016, 31(6): 1113-1123. doi: 10.13443/j.cjors.2016030201. GU Xiaolei, ZHAO Zhijin, and SHEN Lei. Blind estimation of pseudo-random codes in periodic long code direct sequence spread spectrum signals[J]. IET Communications, 2016, 10(11): 1273-1281. doi: 10.1049/iet-com.2015.0374. 趙知?jiǎng)? 李淼, 尚俊娜. 基于矩陣填充和三階相關(guān)的長(zhǎng)短碼DS-CDMA信號(hào)多偽碼盲估計(jì)[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1788-1793. doi: 10.11999/JEIT151087. ZHAO Zhijin, LI Miao, and SHANG Junna. Blind estimation of LSC-DS-CDMA signal based on matrix completion and triple correlation[J]. Journal of Electronics Information Technology, 2016, 38(7): 1788-1793. doi: 10.11999/ JEIT151087. 王航, 郭靜波, 王贊基. 基于聚類的軟擴(kuò)頻信號(hào)盲解擴(kuò)方法[J]. 電子與信息學(xué)報(bào), 2009, 31(2): 422-425. WANG Hang, GUO Jingbo, and WANG Zanji. Clustering based blind despread method of tamed direct sequence spread spectrum signals[J]. Journal of Electronics Information Technology, 2009, 31(2): 422-425. KISORE N R and KOTESWARAIAH C B. Improving ATM coverage area using density based clustering algorithm and voronoi diagrams[J]. Information Sciences, 2016, 376: 1-20. doi: 10.1016/j.ins.2016.09.058. ZHANG Tianqi, QIAN Wenrui, ZHANG Gang, et al. Parameter estimation of MC-CDMA signals based on modified cyclic autocorrelation[J]. Digital Signal Processing, 2016, 54: 46-53. doi: 10.1016/j.dsp.2016.03.007 李曉瑜, 俞麗穎, 雷航, 等. 一種K-means改進(jìn)算法的并行化實(shí)現(xiàn)與應(yīng)用[J]. 電子科技大學(xué)學(xué)報(bào), 2017, 46(1): 61-68. doi: 10.3969/j.issn.1001-0548.2017.01.010. LI Xiaoyu, YU Liying, LEI Hang, et al. The parallel implementation and application of an improved K-means algorithm[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(1): 61-68. doi: 10.3969/j.issn. 1001-0548.2017.01.010. 翟東海, 魚(yú)江, 高飛, 等. 最大距離法選取初始聚類中心的K-means文本聚類算法的研究[J]. 計(jì)算機(jī)應(yīng)用研究, 2014, 31(3): 713-715. doi: 10.3969/j.issn.1001-3695.2014.03.017. ZHAI Donghai, YU Jiang, GAO Fei, et al. K-means text clustering algorithm based on centers selection according to maximum distance[J]. Application Research of Computers, 2014, 31(3): 713-715. doi: 10.3969/j.issn.1001-3695.2014.03. 017. 張健沛, 楊悅, 楊靜, 等. 基于最優(yōu)劃分的K-Means初始聚類中心選取算法[J]. 系統(tǒng)仿真學(xué)報(bào), 2009, 21(9): 2586-2589. ZHANG Jianpei, YANG Yue, YANG Jing, et al. Algorithm for initialization of K-means clustering center based on optimized-division[J]. Journal of System Simulation, 2009, 21(9): 2586-2589. THEODORIDIS S and KOUTROUMBAS K. Pattern Recognition[M]. Fourth Ed. USA: Academic Press, 2010: 415-417. -
計(jì)量
- 文章訪問(wèn)數(shù): 1545
- HTML全文瀏覽量: 168
- PDF下載量: 202
- 被引次數(shù): 0