一種快速的紋理預(yù)測(cè)和混合哥倫布的無(wú)損壓縮算法
doi: 10.11999/JEIT170305
-
1.
(陜西中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院 西安 712046) ②(新加坡國(guó)立大學(xué)科學(xué)信息系統(tǒng)學(xué)院 新加坡 119077)
國(guó)家863計(jì)劃項(xiàng)目(2015M16903),陜西省自然科學(xué)基金(2014K14-02-02)
A Fast-lossless Compression Using Texture Prediction and Mixed Golomb Coding
-
1.
(Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xi&rsquo
-
2.
(Institute of Systems, National University of Singapore, 119077, Singapore)
The National 863 Program of China (2015M16903), The Natural Science Foundation of Shaanxi Province (2014k14-02-02)
-
摘要: 為了進(jìn)一步降低芯片內(nèi)無(wú)損壓縮的運(yùn)算復(fù)雜度和編碼時(shí)間,該文在保持高壓縮率的基礎(chǔ)上,提出一種基于方向預(yù)測(cè)和混合熵編碼的快速無(wú)損壓縮算法。該算法首先采用自適應(yīng)方法進(jìn)行紋理方向的預(yù)測(cè),以獲得當(dāng)前像素的參考像素,并計(jì)算預(yù)測(cè)殘差;然后對(duì)預(yù)測(cè)殘差進(jìn)行混合哥倫布編碼,最終大幅度地提高了無(wú)損壓縮的壓縮性能。實(shí)驗(yàn)結(jié)果顯示,與基于梯度預(yù)測(cè)和變長(zhǎng)編碼的無(wú)損壓縮算法相比,該算法在平均壓縮率略有提升的前提下,平均編碼時(shí)間減少了36.86%。Abstract: A fast-lossless compression using texture prediction and mixed golomb coding is proposed to reduce the computational complexity while keeping high compression ratio. First, the reference pixel of the current pixel is gotten by texture direction prediction, meanwhile, the pixel difference is calculated. Then, the pixel difference is entropy coded through mixed Golomb. Thus, the compression performance is improved greatly. Simulation results show that compared with lossless frame memory compression using pixel gain prediction and dynamic order entropy coding, the proposed algorithm reduce the average coding time by 36.86%. Moreover, the average compression ratio is increased slightly in the proposed algorithm.
-
Key words:
- Chip /
- Fast /
- Lossless compression /
- Compression ratio /
- Coding time
-
ITU-T Study Group 16.23008-2-2013. ITU-T recommendation h.265[S]. Geneva, 2013. SCHWARZ H, MARPE D, and WIEGAND T. Overview of the scalable video coding extension of the h.26/avc standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(9): 1103-1120. doi: 10.1109/ TCSVT.2007. 905532. HNESH Allaeldien and DEMIREL Hasan. DWT-DCT-SVD based hybrid lossy image compression technique[C]. 2016 International Image Processing, Applications and Systems (IPAS), Hammamet, Tunisia, 2016, 11(5): 1150-1172. doi: 10.1109/TGRS.2016.2603527. LEVENIT Hrvoje, NENADI Kresimir, GALI Irena, et al. Compression parameters tuning for automatic image optimization in web applications[C]. ELMAR, 2016 International Symposium. Zadar, Groatia, 2016: 161-180. doi: 10.1109/ELMAR.2016.7731782. BRAHIMI T, BOUBCHIR L, FOURNIER R, et al. An improved multimodal signal-image compression scheme with application to natural images and biomedical data[J]. Multimedia Tools Applications, 2016, 9(7): 1-23. doi: 10.1007 /s11042-016-3952-7. XIAO Jun, TONG Miao, ZHANG Zhu, et al. A joint color image encryption and compression scheme based on hyper- chaotic system[J]. Nonlinear Dynamics, 2016, 84(4): 2333-2356. doi: 10.1007/s11071-061-2648-x. ZHOU N, PAN S, CHENG S, et al. Image compression encryption scheme based on hyper-chaotic system and 2D compressive sensing[J]. Optics Laser Technology, 2016, 82(2): 121-133. doi: 10.1016/j.optlastec.20. BUI Vy, CHING Lincheng, LI Dunling, et al. Comparison of lossless video and image compression codecs for medical computed tomography datasets[C]. 2016 IEEE International Conference on Big Data. Washington D.C., USA, 2016: 1123-1145. doi: 10.1109/BigData.2016.7841075. SHEN Hongda, PAN W David, and WU Dongsheng. Predictive lossless compression of regions of interest in hyper spectral images with no-data Regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 173-182. doi: 10.1109/TGRS.2016.2603527. FAN Y, SHANG Q, and ZENG X. In-block prediction-based mixed lossy and losssless reference frame recompression for next generation video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 112-124. doi: 10.1109/TCSVT.2014.2329353. SILVERIRA D, POVALA G, AMARAL L, et al. A low complexity and lossless reference frame encoder algorithm for video coding [C]. IEEE International Conference on Acoustic Speech and Signal Processing, Danvers, 2014: 7408-7412. doi: 10.1109/ICASSP.2014.6855029. GUPTE A D, AMRUTUR B, MEHENDALE M M, et al. Memory bandwidth and power reduction using lossy reference frame compression in video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 21(20): 225-230. doi: 10.1109/TCSVT.2011.2105599. MA Y and KANG L. Adaptive granularity selection in reference picture memory compression[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shenyang, China, 2015: 1158-1161. doi: 10.2991/meic-15.2015.263. LEE Y. A new frame recompression algorithm integrated with h.264 video compression[C]. International Symposium on Circuits and Systems, Nagoya, 2007: 1621-1624. doi: 10.1109/ ISCAS.2007.378829. SAMPAIO F, ZATT B, SHAFIQUE M, et al. Content- adaptive reference frame compression based on intra-frame prediction for multi view video coding[C]. IEEE International Conference on Image Processing, Melboume, 2013: 1831-1835. doi: 10.1109.ICIP.2013.6738377. LIAN X, LIU Z, ZHOU W, et al. Lossless frame memory compression using pixel-grain prediction and dynamic order entropy coding for video technology[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(1): 223-235. doi: 10.1109/TCSVT.2015.2469572. -
計(jì)量
- 文章訪問(wèn)數(shù): 1715
- HTML全文瀏覽量: 221
- PDF下載量: 163
- 被引次數(shù): 0