采用復(fù)合三角函數(shù)實(shí)現(xiàn)MIMO雷達(dá)單快拍成像的平滑l0范數(shù)改進(jìn)算法
doi: 10.11999/JEIT170294
基金項目:
國家自然科學(xué)基金(6157010318)
Improved Smoothed l0 Norm Algorithm for MIMO Radar Signal Snapshot Imaging via Composite Trigonometric Function
Funds:
The National Natural Science Foundation of China (6157010318)
-
摘要: SL0算法采用最速下降法和梯度投影原理,將選取的平滑函數(shù)逼近l0范數(shù),以求解最優(yōu)化問題實(shí)現(xiàn)信號重建。針對平滑函數(shù)逼近性能、算法精確度和算法運(yùn)算量3個方面進(jìn)行研究,該文提出一種高效地實(shí)現(xiàn)信號重構(gòu)的算法 ICTF-SL0算法。首先,選取復(fù)合三角函數(shù)作為平滑函數(shù),同時以加權(quán)的方式引入全變差(Total Variation, TV)設(shè)定約束條件;其次,采用Chaotic迭代代替矩陣分解實(shí)現(xiàn)梯度投影。仿真結(jié)果證明,相比SL0及其他改進(jìn)算法,ICTF-SL0能夠提高成像精度,降低運(yùn)算負(fù)擔(dān),實(shí)現(xiàn)稀疏陣列MIMO雷達(dá)單快拍成像。
-
關(guān)鍵詞:
- MIMO雷達(dá) /
- 稀疏陣列 /
- 平滑SL0算法 /
- 復(fù)合三角函數(shù) /
- Chaotic迭代 /
- 全變差
Abstract: Smoothed l0(SL0) norm algorithm, using the steepest descent method and gradient projection principle, approaches tol0 norm with selected smooth function, so as to solve the optimization problem and achieve signals reconstruction. A reconstruction algorithmImproved Composite Trigonometric Function (ICTF-SL0) is proposed, researching approximation of smooth function, precision and calculation load of the algorithm. Firstly, composite trigonometric function is chosen as the smooth one, meanwhile constraint condition is designed by adding Total Variation (TV) as a weight value. And then, matrix decomposition is alternated by using Chaotic iteration to accomplish gradient projection. Finally, by contrast with origin SL0 algorithm and other improved algorithms, simulation results demonstrate that ICTF-SL0 algorithm can availably improve imaging precision, decrease calculation load and achieve signal snapshot imaging under sparse array MIMO radar. -
HU Xiaowei, TONG Ningning, ZhANG Yongshun, et al. Multiple-Input-Multiple-Output (MIMO) radar super- resolution three-dimensional imaging based on a dimension- reduction compressive sensing[J]. IET Radar, Sonar Navigation, 2016, 10(4): 757-764. doi: 10.1049/iet-rsn. 2015.0345. 楊建超, 蘇衛(wèi)民, 顧紅. 基于二維頻率估計的MIMO-ISAR空時二維回波重排方法[J]. 電子與信息學(xué)報, 2014, 36(9): 2180-2186. doi: 10.3724/SP.J.1146.2013.01558. YANG Jian-chao, SU Wei-min, and GU Hong. A method for rearrangement of 2D MIMO-ISAR space-time echo based on 2D frequency estimation[J]. Journal of Electronics Information Technology, 2014, 36(9): 2180-2186. doi: 10.3724 /SP.J.1146.2013.01558. 陳剛. 稀布陣列MIMO雷達(dá)成像技術(shù)研究[D]. [博士論文], 南京理工大學(xué), 2014. CHEN Gang. Research on techniques for sparse array MIMO radar imaging[D]. [Ph.D. dissertation], Nanjing University of Science Technology, 2014. GU Fufei, CHI Long, ZHANG Qun, et al. Single snapshot imaging method in Multiple-Input Multiple-Output radar with sparse antenna array[J]. IET Radar, Sonar Navigation, 2013, 7(5): 535-543. doi: 10.1049/iet-rsn.2011.0363. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. 文方青, 張弓, 陶宇, 等. 面向低信噪比的自適應(yīng)壓縮感知方法[J]. 物理學(xué)報, 2015, 64(8): 084301-1-084301-8. doi: 10.7498 /aps.64.084301. WEN Fangqing, ZHANG Gong, TAO Yu, et al. Adaptive compressive sensing toward low signal-to-noise ratio scene[J]. Acta Physics Sinica, 2015, 64(8): 084301-1-084301-8. doi: 10.7498/aps.64.084301. 徐浩, 朱宇, 劉杰, 等. 集群微波遙感衛(wèi)星稀疏隨機(jī)分布構(gòu)型成像[J]. 測繪通報, 2014(S1): 32-35. doi: 10.13474/j.cnki. 11-2246.2014.0608. XU Hao, ZHU Yu, LIU Jie, et al. The imaging of cluster microwave remote sensing satellites based on the sparse random distribution[J]. Bulletin of Surveying and Mapping, 2014(S1): 32-35. doi: 10.13474/j.cnki.11-2246.2014.0608. 胡曉偉, 童寧寧, 何興宇, 等. 基于Kronecker壓縮感知的寬帶MIMO雷達(dá)高分辨三維成像[J]. 電子與信息學(xué)報, 2016, 38(6): 1475-1481. doi: 10.11999/JEIT150995. HU Xiaowei, TONG Ningning, HE Xingyu, et al. High- resolution 3D imaging via wideband MIMO radar based on kronecker compressive sensing[J]. Journal of Electronics Information Technology, 2016, 38(6): 1475-1481. doi: 10. 11999/JEIT150995. MOHIMANI G H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301. doi: 10.1109/TSP.2008. 2007606. 齊煥芳, 徐源浩. 用于壓縮感知信號重建的SL0改進(jìn)算法[J]. 電子科技, 2015, 28(4): 27-30. doi: 10.16180/j.cnki.issn1007- 7820.2015.04.008. QI Huanfang and XU Yuanhao. Improved SL0 algorithm for compressive sensing signal reconstruction[J]. Electronic Science Technology, 2015, 28(4): 27-30. doi: 10.16180/ j.cnki.issn1007-7820.2015.04.008. CHANGZHENG M, TAT SOON Y, YONGBO Z, et al. MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2168-2183. doi: 10.1109/TIP.2014. 2311735. 朱宇濤, 粟毅. 一種M2發(fā)N2收MIMO雷達(dá)平面陣列及其三維成像方法[J]. 中國科學(xué): 信息科學(xué), 2011, 41(12): 1495-1506. ZHU Yutao and SU Yi. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory[J]. Scientia Sinica (Informationis), 2011, 41(12): 1495-1506. 趙瑞珍, 林婉娟, 李浩, 等. 基于光滑l0范數(shù)和修正牛頓法的壓縮感知重建算法[J]. 計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報, 2012, 24(4): 478-484. ZHAO Ruizhen, LIN Wanjuan, LI Hao, et al. Reconstruction algorithm for compressive sensing based on smoothed norm and revised newton method[J]. Journal of Compute-Aided Design Computer Graphics, 2012, 24(4): 478-484. HOU Biao, ZHANG Guang, LI Zhenwei, et al. Sparse coding-inspired high-resolution ISAR imaging using multistage compresive sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 26-40. doi: 10.1109/TAES.2017.2649161. ZUO Wangmei and LIN Zhouchen. A generalized accelerated proximal gradient approach for solving total-variation-based image restoration[J]. IEEE Transactions on Image Processing, 2011, 20(10): 2748-2759. doi: 10.1109/TIP.2011.2131665. 喬田田. 基于優(yōu)化模型和Bregman迭代的圖像恢復(fù)算法研究[D]. [博士論文, 哈爾濱工業(yè)大學(xué), 2014. QIAO Tiantian. Research on algorithms of image restoration based on l1 optimization model and Bregman iteration[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2014. -
計量
- 文章訪問數(shù): 1208
- HTML全文瀏覽量: 127
- PDF下載量: 260
- 被引次數(shù): 0