基于人工靶向免疫療法的紅外手部痕跡目標(biāo)提取
doi: 10.11999/JEIT170282
基金項(xiàng)目:
國家自然科學(xué)基金(61272358),北京市重點(diǎn)學(xué)科共建項(xiàng)目(XK100080537)
Target Extraction of Hand Infrared Trace Images Based on Artificial Targeting Immunotherapy
Funds:
The National Natural Science Foundation of China (61272358), Beijing Key Discipline Development Program (XK100080537)
-
摘要: 紅外手部熱痕跡圖像是特殊的模糊圖像,該文提出一種人工靶向免疫療法對其進(jìn)行手部目標(biāo)提取。首先依據(jù)序列圖像中像素灰度的變化趨勢設(shè)計(jì)了先天性免疫識別進(jìn)行初分割;然后借鑒免疫的提呈機(jī)制,根據(jù)熱擴(kuò)散特性定義同心圓模板提取特征;基于模板特征對模糊像素集適應(yīng)性免疫識別;最后,指尖指谷病變檢測分析,實(shí)施靶向治療,保證了手的形態(tài)特征。與分水嶺、SOM網(wǎng)絡(luò)以及近幾年研究成果進(jìn)行了比較,表明提出的算法在目標(biāo)提取率、絕對誤差率均優(yōu)于現(xiàn)有算法,提取結(jié)果更符合手的形態(tài),同時(shí)擴(kuò)展了應(yīng)用熱痕跡信息的時(shí)間跨度。
-
關(guān)鍵詞:
- 模糊紅外圖像 /
- 模板特征 /
- 免疫網(wǎng)絡(luò) /
- 靶向免疫療法
Abstract: Hand infrared trace images can not clearly reflect the original contact contour of hand, which belong to a special kind of infrared blurred images. Inspired by biological immune, an artificial targeting immunotherapy is proposed to extract the hand target. Firstly, according to the feature of temporal correlation, the innate immune recognition is designed to preliminary segmentation. Secondly, according to the immune presentation, a concentric circles template based on thermal diffusion is defined to extract features. Then adaptive immune recognition is applied to the fuzzy pixels set based on the obtained template features. Finally, for the detected finger valley and fingertips lesions, targeted therapy is implemented to keep the shape of the hand. The proposed algorithm is compared with watershed method, SOM network and recent research achievements. Experimental results show that the proposed algorithm exhibits better extraction performance, meanwhile the application time of thermal trace images is extended.-
Key words:
- Blurred infrared images /
- Template features /
- Immune network /
- Targeted immunotherapy
-
XIONG Zonglong, YANG Kuntao, DING Wenxiu, et al. Computational and experimental research on infrared trace by human being contact[J]. Applied Optics, 2010, 49(18): 3587-3595. doi: 10.1364/AO.49.003587. 韓玉閣, 成志鐸, 任登鳳, 等. 裝甲車輛與地面背景的熱交互作用及紅外仿真[J]. 紅外與激光工程, 2013, 42(1): 20-25. HAN Yuge, CHENG Zhiduo, REN Dengfeng, et al. Thermal interactions and infrared simulation of armored vehicles and ground background[J]. Infrared and Laser Engineering, 2013, 42(1): 20-25. FU Dongmei, YU Xiao, and TONG Hejun. Target extraction of blurred infrared image with an immune network template algorithm[J]. Optics Laser Technology, 2014, 56(1): 102-106. doi: 10.1016/j.optlastec.2013.07.019. 付冬梅, 于曉, 童何俊. 基于免疫模板聚類的模糊中波紅外圖像目標(biāo)提取[J]. 光譜學(xué)與光譜分析, 2014, 34(3): 673-676. doi: 10.3964/j.issn.1000-0593(2014)03-0673-04. FU Dongmei, YU Xiao, and TONG Hejun. Extracting target blurred midwave infrared image based on immune template clustering[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 673-676. doi: 10.3964/j.issn.1000-0593(2014)03-0673-04. 李輝. 紅外序列圖像中手部痕跡目標(biāo)提取的立體化模板研究[D]. [碩士論文], 北京科技大學(xué), 2015. LI Hui. Research on hand trace target extraction using 3D template from sequence infrared images[D]. [Master dissertation], University of Science and Technology Beijing, 2015. LI Hui, FU Dongmei, and YANG Tao. Hand target extraction from infrared images with descriptor based on pixel temporal characteristics[C]. 2015 8th International Congress on Image Signal Processing(CISP), Changchun, China, 2015: 458-463. FAWAZ A A and ALLAHVERDI A. An artificial immune system heuristic for two-stage multi-machine assembly scheduling problem to minimize total completion time[J]. Journal of Manufacturing Systems, 2013, 32(4): 825-830. doi: 10.1016/j.jmsy.2013.06.001. CHARLES A J, PAUL T, MARK W, et al. Janeway,s Immunobiology[M]. 5th Version, Beijing China: Science Press, 2007: 107-140. SHARMA P, ALLISON J P, et al. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential[J]. Cell, 2015, 161(2): 205-214. doi: 10.1016/j.cell.2015.03.030. MEHRAD E and KARIM F. Automatic traffic monitoring from satellite images using artificial immune system[J]. Lecture Notes in Computer Science, 2010: 170-179. doi: 10.1007/978-3-642-14980-1_16. AL-SHESHTAWI K A, ABDUL-KADER H M, and ISMAIL N A. Artificial immune clonal selection classification algorithms for classifying malware and benign processes using API call sequences[J]. International Journal of Computer Science and Network Security, 2010, 10(4): 31-39. KARAKOSE M. Reinforcement learning based artificial immune classifier[J]. Scientific World Journal, 2013, 2013: 581846. doi: 10.1155/2013/581846. ZHAO Mengling and LIU Hongwei. An associate rules mining algorithm based on artificial immune network for SAR image segmentation[J]. Mathematical Problems in Engineering, 2015: 1-14. doi: 10.1155/2015/839081. AHMADI S D and SAJEDI H. Image steganography with Artificial Immune System[C]. IEEE Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 45-50. doi: 10.1109/RIOS.2017. 7956442. 于曉. 紅外圖像中手部痕跡目標(biāo)的提取研究[D]. [博士論文], 北京科技大學(xué), 2014. YU Xiao. Research on hand trace target extraction from infrared image [D]. [Ph.D. dissertation], Beijing: University of Science and Technology Beijing, 2014. 尚振宏, 劉明業(yè). 基于歐氏距離的拐點(diǎn)檢測算法[J]. 計(jì)算機(jī)應(yīng)用, 2004, 24(10): 88-91. SHANG Zhenhong and LIU Mingye. Corner detection algorithm based on Euclidean distance[J]. Computer Applications, 2004, 24(10): 88-91. 劉淑萍, 劉羽, 於俊, 等. 結(jié)合手指檢測和HOG特征的分層靜態(tài)手勢識別[J]. 中國圖象圖形學(xué)報(bào), 2015, 20(6): 781-788. doi: 10.11834/jig.20150607. LIU Shuping, LIU Yu , YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of Image and Graphics, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607. 楊燾, 付冬梅. 流形正則化多核模型的模糊紅外目標(biāo)提取[J]. 工程科學(xué)學(xué)報(bào), 2016, 38(6): 876-885. doi: 10.13374/j.issn 2095-9389.2016.06.019. YANG Tao and FU Dongmei. Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model[J]. Chinese Journal of Engineering, 2016, 38(6): 876-885. doi: 10.13374/j.issn2095-9389.2016.06.019. CRDENES R, BACH M, CHI Y, et al. Multimodal evaluation for medical image segmentation[C]. International Conference on Computer Analysis of Images and Patterns, Vienna, Austria, 2007: 229-236. doi: 10.1007/978-3-540- 74272-2_29. BABALOLA K O, PATENAUDE B, and ALJABAR P. An evaluation of four automatic methods of segmenting the subcortical structures in the brain[J]. Neuroimage, 2009, 47(4): 1435-1447. doi: 10.1016/j.neuroimage.2009.05.029. -
計(jì)量
- 文章訪問數(shù): 1249
- HTML全文瀏覽量: 73
- PDF下載量: 133
- 被引次數(shù): 0