基于部分可測(cè)馬爾科夫決策過程業(yè)務(wù)感知的微基站休眠時(shí)長確定策略
doi: 10.11999/JEIT170274
基金項(xiàng)目:
國家高科技研究發(fā)展計(jì)劃(2014AA01A701),國家自然科學(xué)基金(61571073)
Micro Base Station Sleeping Cycle Determination Strategy Based on Partially Observed Markov Decision Process Traffic Aware
Funds:
The National High Technology Research and Development Program of China (2014AA01A701), The National Natural Science Foundation of China (61571073)
-
摘要: 針對(duì)密集組網(wǎng)場(chǎng)景中業(yè)務(wù)不確定性引起的基站休眠周期難以確定的問題,該文提出一種基于部分可測(cè)馬爾可夫決策過程(Partially Observed Markov Decision Process, POMDP)業(yè)務(wù)感知的微基站休眠時(shí)長確定策略。該策略將周期分為長周期和短周期,每個(gè)周期由輕度和深度兩個(gè)階段構(gòu)成。通過POMDP感知到達(dá)基站的業(yè)務(wù)狀態(tài),動(dòng)態(tài)調(diào)整周期時(shí)長,進(jìn)而選取適合當(dāng)前周期的時(shí)長。仿真結(jié)果表明,該策略可以根據(jù)業(yè)務(wù)感知提前確定微基站關(guān)斷時(shí)長,與基于業(yè)務(wù)門限值的基站關(guān)斷機(jī)制相比節(jié)能效果更好。
-
關(guān)鍵詞:
- 密集組網(wǎng) /
- 關(guān)斷機(jī)制 /
- 部分可測(cè)馬爾可夫過程 /
- 業(yè)務(wù)感知 /
- 長/短休眠周期 /
- 動(dòng)態(tài)調(diào)整
Abstract: In order to solve the problem that the sleeping cycles are difficult to be determined duo to the traffic uncertainty in dense network scenarios, this paper proposes a Micro base station sleeping cycle determination strategy which based on the Partially Observed Markov Decision Process (POMDP) traffic-aware. In this strategy, the sleeping cycle is divided into long cycle and short cycle, and each cycle consists of deep and light stage. Based on the POMDP traffic-aware, it can dynamic adjusting the cycle and determine the proper length of cycle. Both the analytical and simulation results show that compare with sleeping strategy based on the traffic threshold, the base station sleeping strategy based on traffic awareness can effectively reduce the energy consumption of the micro base stations in the dense network by adjusting the sleeping time of the micro base stations in real time. -
ISMAIL Muhammad, ZHUANG Weihua, SERPEDIN Erchin, et al. A survey on green mobile networking: From the perspectives of network operators and mobile users[J]. IEEE Communications Surveys Tutorials, 2015, 17(3): 1535-1556. doi: 10.1109/COMST.2014.2367592. WU Jingjin, ZHANG Yujing, ZUKERMAN Moshe, et al. Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 803-826. doi: 10.1109/ COMST.2015.2403395. COMBES R, ELAYOUBI S E, ALI A, et al. Optimal online control for sleep mode in green base stations[J]. Computer Networks, 2015, 78: 140-151. doi: 10.1016/ COMNET.2014. 10.031. SAKER L and ELAYOUBI S E. Sleep mode implementation issues in green base stations[C]. 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Istanbul, Turkey, 2010: 1683-1688. doi: 10.1109/PIMRC.2010.5671926. ALSHARIF M H, NORDIN R, and ISMAIL M. Cooperation management among base stations based on cells switch-off for a green LTE cellular network[J]. Wireless Personal Communications, 2015, 81(1): 303-318. doi: 10.1007/ S11277- 014-2129-9. HU Jinming, HENG Wei, ZHANG Guodong, et al. Base station sleeping mechanism based on traffic prediction in heterogeneous networks[C]. Telecommunication Networks and Applications Conference, Sydney, NSW, Australia, 2015: 83-87. JIN Zhe, PAN Zhiwen, LIU Nan, et al. Dynamic pico switch on/off algorithm for energy saving in heterogeneous networks [C]. 2015 IEEE 81st Vehicular Technology Conference, Glasgow, UK, 2015: 1-5. EBRAHIM Aysha and ALSUSA Emad. Interference minimization through sleep mode based resource allocation for future femtocell networks[C]. 2015 IEEE International Conference on Communications (ICC). London, UK, 2015: 1679-1684. SON Kyuho, KIM Hongseok, YI Yung, et al. Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1525-1536. doi: 10.1109/JSAC.2011.110903. WU Jian, ZHOU Sheng, and NIU Zhisheng. Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 4196-4209. doi: 10.1109/TWC.2013.071613.122092. YU Yuping and FENG Kaiteng. Traffic-based DRX cycles adjustment scheme for 3GPP LTE systems[C]. Vehicular Technology Conference, Yokohama, Japan, 2012: 1-5. HSU Chunghsien, FENG Kaiteng, and CHANG Chungju. Statistical control approach for sleep-mode operations in IEEE 802.16 m systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4453-4466. doi: 10.1109/TVT.2010. 2070086. GUNTHER A, OLIVER B , VITO G, et al. D2. 3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown[OL]. https://bscw. ict-earth.eu/pub/bscw.cgi/d71252/EARTH_WP2_D2.3_v2.pdf.2010. WANG Ke, LI Xi, and JI Hong. Traffic-based queue-aware scheduling for 3GPP LTE system[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(2): 63-68. doi: 10.1016/S1005-8885(14)60287-9 CASSANDRA A R and KAELBLING L P. Learning policies for partially observable environments: Scaling up[C]. Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, 1995. 362. 馮奇, 周雪忠, 黃厚寬, 等. POMDP 基于點(diǎn)的值迭代算法中一種信念選擇方法[J]. 北京交通大學(xué)學(xué)報(bào), 2009, 33(5): 77-80. FENG Qi, ZHOU Xuezhong, HUANG Houkuan, et al. POMDP iterative algorithm based on the value of the point of a belief selection method[J]. Journal of Beijing Jiaotong University, 2009, 33(5): 77-80. EUNSUNG Oh, KYUHO Son, and BHASKAR Krishnamachari. Dynamic base station switching-on/off strategies for green cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2126-2136. doi: 10.1109/TWC.2013.032013.120494. -
計(jì)量
- 文章訪問數(shù): 1287
- HTML全文瀏覽量: 139
- PDF下載量: 158
- 被引次數(shù): 0