MIMO-OFDM系統(tǒng)中各天線獨立相位噪聲的影響
doi: 10.11999/JEIT170260
基金項目:
國家自然科學(xué)基金(61501527),廣州市協(xié)同創(chuàng)新科技專項,深圳市基礎(chǔ)研究基金
Influence of Independent Phase Noises on MIMO-OFDM Systems
Funds:
The National Natural Science Foundation of China (61501527), Guangzhou Cooperative Innovation Technology Special, The Science, Technology and Innovation Commission of Shenzhen Municipality
-
摘要: 隨著無線通信頻段的不斷提高,非理想載波所引入的相位噪聲對OFDM系統(tǒng)正交性的破壞也越來越不容忽視。與此同時,受天線間距離等實際因素的限制,發(fā)送或接收端的天線間可能無法共用載波時鐘,導(dǎo)致不同天線上的相位噪聲互相獨立。該文在各天線獨立的相位噪聲的假設(shè)下,得出了MIMO-OFDM系統(tǒng)各子流檢測誤差的自相關(guān)矩陣的近似表達式,其中公共相位誤差(CPE),載波間干擾(ICI)和熱噪聲的影響具有可加性,且對于CPE和ICI二者而言,收發(fā)相位噪聲的影響也近似可加。上述理論推導(dǎo)的合理性通過計算機仿真得以驗證。
-
關(guān)鍵詞:
- 多輸入多輸出正交頻分復(fù)用 /
- 相位噪聲 /
- 公共相位誤差(CPE) /
- 載波間干擾(ICI)
Abstract: With the actually used frequency band going higher and higher in wireless communications, the influence of phase noise induced by imperfect carrier on OFDM systems can no longer be ignored. At the same time, the restrictions on the antenna spacing may make it impossible for different antennas to share the same carrier clock. In a MIMO-OFDM system with independent phase noises on different antennas, the approximate expression of error covariance matrix for demodulated data streams is given, and it is shown that the influence of CPE, ICI and additive noise are additive and independent of each other; besides, for both CPE and ICI, the influence of phase noises induced by the transmitter or the receiver are additive and independent of each other too. The validity of the theoretical deduction is verified by numerical simulation.-
Key words:
- MIMO-OFDM /
- Phase noise /
- Common Phase Error (CPE) /
- Inter-Carrier Interference (ICI)
-
NIYATO D, MASO M, KIM DI, et al. Practical perspectives on IoT in 5G networks: from theory to industrial challenges and business opportunities[J]. IEEE Communications Magazine, 2017, 55(2): 68-69. doi: 10.1109/MCOM.2017. 7842414. BOCCARDI F, HEATH R W, LOZATO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74-80. doi: 10.1109/ MCOM.2014.6736746. AL-FALAHY N and ALANI OY. Technologies for 5G networks: Challenges and opportunities[J]. IT Professional, 2017, 19(1): 12-20. doi: 10.1109/MITP.2017.9. NORDRUM A. Here comes 5G-whatever that is[J]. IEEE Spectrum, 2017, 54(1): 44-45. doi: 10.1109/MSPEC.2017. 7802747. ISLAM M S, KAMRUZZAMAN M, JESSY T, et al. Performance analysis of massive MIMO for 5G wireless communication systems[C]. International Conference on Computing, Communication and Automation (ICCCA), Uttar Pradesh, 2016: 1579-1583. KASHIMA T, QIU J, SHEN H, et al. Large scale massive MIMO field trial for 5G mobile communications system[C]. International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016: 602-603. BERARDINELLI G, PAJUKOAKI K, LAHETKANGAS E, et al. On the potential of OFDM enhancements as 5G waveforms[C]. Vehicular Technology Conference (VTC Spring), Seoul, 2014: 1-5. WU D, ZHANG X, QIU J, et al. A field trial of f-OFDM toward 5G[C]. IEEE Globecom Workshops, Washington, 2016: 1-6. SCHELLMANN M, ZHAO Z, GONG X, et al. Air interface for 5G: PHY design based on pulse shaped OFDM[C]. IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, 2016: 1-5. PETROVIC D, RAVE W, and FETTWEIS G. Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation[J]. IEEE Transactions on Communications, 2007, 55(8): 1607-1616. doi: 10.1109/ TCOMM.2007.902593. SCHENK T C W and MATTHEIJSSEN P. Analysis of the influence of phase noise in MIMO-OFDM based WLAN systems[C]. 10th Symposium on Communications and Vehicular Technology, The Netherlands, 2003: 1-8. PITAROKOILIS A, BJORNSON E, and LARSSON E G. Performance of the massive MIMO uplink with OFDM and phase noise[J]. IEEE Communications Letters, 2016, 20(8): 1595-1598. KRISHNAN R, KHANZADI M R, KRISHNAN N, et al. Linear massive MIMO precoders in the presence of phase noiseA large-scale analysis[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3057-3071. BOHAGEN F, ORTEN P, and QIEN G E. Design of optimal high-rank line-of-sight MIMO channels[J]. IEEE Transactions on Wireless Communications, 2007, 6(4): 1420-1425. doi: 10.1109/TWC.2007.348338. ZHOU S, ZHAO M, XU X, et al. Distributed wireless communication system: A new architecture for future public wireless access[J]. IEEE Communications Magazine, 2003, 41(3): 108-113. doi: 10.1109/MCOM.2003.1186553. XU P, XIAO Y, ZHOU S, et al. ICI analysis of MIMO-OFDM systems with independent phase noise at both transmit and receive antennas[C]. 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, 2009: 1-4. -
計量
- 文章訪問數(shù): 1269
- HTML全文瀏覽量: 172
- PDF下載量: 229
- 被引次數(shù): 0