認(rèn)知雷達(dá)的未知目標(biāo)檢測
doi: 10.11999/JEIT170254
基金項(xiàng)目:
國家自然科學(xué)基金(61571456),陜西省自然科學(xué)基金(2016JM0644)
Unknown Target Detection for Cognitive Radar
Funds:
The National Natural Science Foundation of China (61571456), The Natural Science Foundation of Shaanxi Province (2016JM0644)
-
摘要: 認(rèn)知雷達(dá)可以在探測過程中不斷優(yōu)化自身系統(tǒng)參數(shù),實(shí)現(xiàn)與當(dāng)前探測環(huán)境的匹配,從而能夠改善雷達(dá)的探測性能。針對(duì)未知目標(biāo)的探測問題,利用當(dāng)前回波數(shù)據(jù)更新目標(biāo)分量的估計(jì)值及其協(xié)方差矩陣,基于目標(biāo)相關(guān)信息優(yōu)化下一次探測所需的發(fā)射機(jī)波形和接收機(jī)濾波器,并構(gòu)成一個(gè)閉環(huán)處理過程。該文提出了兩種優(yōu)化途徑,第1種途徑利用目標(biāo)分量的估計(jì)僅優(yōu)化下一次探測波形,在接收端采用廣義匹配濾波器;第2種途徑將估計(jì)誤差等效為信號(hào)依賴的噪聲,聯(lián)合優(yōu)化發(fā)射波形與接收機(jī)濾波器。計(jì)算機(jī)仿真分析表明,采用閉環(huán)迭代優(yōu)化的方法是漸進(jìn)等效的,并可以在相干累積獲得的性能增益基礎(chǔ)上,進(jìn)一步改善雷達(dá)的探測性能。
-
關(guān)鍵詞:
- 認(rèn)知雷達(dá) /
- 目標(biāo)檢測 /
- 閉環(huán)處理 /
- 凸優(yōu)化
Abstract: For the cognitive radar system, the system parameters can be optimized to match the current environment during the detection procedure, so as to improve the radar detection performance. For the unknown target detection problem, the useful signal component estimate and its covariant matrix are updated using the current returns, then the transmit waveform and receive filter are optimized based on the information of the useful signal. A closed loop processing is formed. The two optimization approaches are proposed. For the first approach, the transmit waveform design is based on the estimate of the useful signal, and the generalized match filter is used at the receiver. For the second approach, the estimate error of the useful signal is equivalent to the signal- dependent noise, and the transmit waveform and receive filter are jointly designed. The computer simulation result show that, the proposed methods are asymptotically equivalent, and they can improve the detection performance further, compared with the performance gain of the coherent accumulation.-
Key words:
- Cognitive radar /
- Target detection /
- Close loop process /
- Convex optimization
-
HAYKIN S. Cognitive Dynamic Systems[M]. London: Cambridge University Press, 2012, 122-125. BELL K L, BAKER C J, and SMITH G E. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Toptics in Signal Processing, 2015, 9(8): 1427-1439. doi: 10.1109/JSTSP.2015.2465304. HAO C, ORLANDO D, FOGLIA G, et al. Adaptive radar detection and range estimation with oversampled data for partially homogeneous environment[J]. IEEE Signal Processing Letters, 2015, 22(9): 1359-1363. doi: 10.1109/LSP. 2015.2404923. SMITH G E, CAMMENGA Z, MITCHELL A, et al. Experiments with cognitive radar[J]. IEEE AE System Magazine, 2016, 31(12): 34-46. doi: 10.1109/CAMSAP.2015. 7383794. KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1998. BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE AE System Magazine, 2016, 31(11): 2-42. doi: 10.1109/MAES.2016.160071. KARBASI S M, AUBRY A, MAIO A De, et al. Robust transmit code and receive filter design for extended targets in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 1965-1976. doi: 10.1109/TSP.2015.2404301. AUBRY A, CAROTENUTO V, MAIO A De, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE AE Systems Magazine, 2016, 31(12): 14-25. doi: 10.1109/MAES.2016. 150216. CHENG X, AUBRY A, CIUONZO D, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370-384. doi: 10.1109/TAES.2017.2650619. DE MAIO A, DE NICOLA S, HUANG Y, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618-5629. doi: 10.1109/TSP.2008. 929657. AUBRY A, DE MAIO A, JIANG B, et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5603-5620. doi: 10.1109/TSP.2013.2273885. LUO Z Q, MA W K, SO A M, et al. Semidefinite relaxation of quadratic optimization problems, from its practical deployments and scope of applicability to key theoretical results[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. doi: 10.1109/MSP.2010.936019. AI W, HUANG Y, and ZHANG S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, Series A, 2011, 128(1): 253-283. doi: 10.1007/ s10107-009-0304-7. AUBRY A, MAIO A De, and WICKS M. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93-115. doi: 10.1109/TAES.2013.6404093. CHARNES A and COOPPER W W. Programming with linear fractional functions[J]. Naval Research Logistics Quarterly, 1962, 9: 181-186. doi: 10.1002/nav.3800100123. -
計(jì)量
- 文章訪問數(shù): 1448
- HTML全文瀏覽量: 169
- PDF下載量: 233
- 被引次數(shù): 0