A Coregistration Method for Ocean Surface Complex Images of Along-track Interferometric SAR without Control Point
Funds:
The Foundation of National Key Laboratory of Science and Technology on Microwave Imaging (CXJJ_15S119)
-
摘要: 順軌干涉SAR海面復圖像通常利用靜止陸地參考點進行配準,獲得精確有效的海洋流場干涉相位信息。復圖像中無參考點時,僅能依據(jù)海浪紋理進行配準,受海面隨機運動以及低信噪比的影響,配準像素偏移往往會出現(xiàn)像素級誤差,并導致干涉相位圖質(zhì)量嚴重下降。根據(jù)大尺度海浪變化周期較長,在干涉成像間隔內(nèi)可視作靜止這一特征,該文提出保留大尺度海浪對應的方位譜分量以提高數(shù)據(jù)信噪比和相關性,進而提高配準精度的方法,并選用海面實際方位分辨率作為大尺度海浪方位譜選取范圍的約束條件。通過機載順軌干涉SAR實驗數(shù)據(jù)證明,所提方法可有效提高無參考點海面復圖像的配準精度。Abstract: In order to get high-precision interferogram of ocean surface current, static control points from land area are normally used to coregistrate ocean surface complex images of along-track interferometric SAR. When there is no control point in the image, ocean wave texture can only be used instead. Under the influence of stochastic movement and low signal-to-noise ratio of the ocean, the coregistration error tends to exceed one pixel, hence damages the quality of interferogram severely. Since the period of large-scale wave is much longer than the interferometric interval, large-scale wave can be treated as static during the interval. Based on this matter of fact, this paper proposes a coregistration method by reserving the spectrum of large-scale wave to improve the signal-to-noise ratio and correlation coefficient, further improving the coregistration precision. Ocean azimuth resolution is used as the criterion to decide which part of the spectrum should be reserved. Airborne along-track interferometric SAR data is demonstrated here, proving the proposed method can improve the coregistration precision of ocean surface complex images without control point.
-
ROMEISER R and GRABER H C. Advanced remote sensing of internal waves by spaceborne along-track InSARA demonstration with TerraSAR-X[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(12): 6735-6751. doi: 10.1109/TGRS.2015.2447547. MARTIN A C H, GOMMENGINGER C, MARQUEZ J, et al. Wind-wave induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign[J]. Journal of Geophysical Research Oceans, 2016, 121(6): 5314-5328. doi: 10.1002/2015JC011459. DENG H, FARQUHARSON G, THOMSON J, et al. An analysis of error in surface current mapping by an along-track interferometric FMCW SAR[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 3215-3218. doi: 10.1109/IGARSS.2016. 7729832. CHEN Z, ZHANG L, and ZHANG G. An improved InSAR image coregistration method for pairs with relatively big distortions or large incoherent areas[J]. Sensors, 2016, 16(9): 1213-1226. doi: 10.3390/s16091519. DVORNYCHENKO V N. Bounds on (deterministic) correlation functions with application to registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, PAMI-5(2): 206-213. doi: 10.1109/TPAMI. 1983.4767373. ROMEISER R. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis[J]. IEEE Transactions on Geoscience Remote Sensing, 2014, 52(5): 2759-2772. doi: 10.1109/TGRS.2013.2265659. SUCHANDT S and RUNGE H. Ocean surface observations using the TanDEM-X satellite formation[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2015, 8(11): 5096-5105. doi: 10.1109/JSTARS.2015. 2446893. PLANT W J, TERRAY E A, PETITT R A, et al. The dependence of microwave backscatter from the sea on illuminated area-correlation times and lengths[J]. Journal of Geophysical Research Atmospheres, 1994, 99(C5): 9705-9723. doi: 10.1029/93JC00862. JACKSON C. Synthetic Aperture Radar Marine User,s Manual[M]. Washington, DC: Published Online, 2004: 36-40. 吳琴霞, 梁興東, 李焱磊, 等. 殘余運動誤差對機載多波段SAR 圖像配準的影響分析[J]. 雷達學報, 2015, 4(2): 209-216. doi: 10.12000/JR14065. WU Qinxia, LIANG Xingdong, LI Yanlei, et al. Analysis of the residual motion error impact on airborne multiband SAR image registration[J]. Journal of Radars, 2015, 4(2): 209-216. doi: 10.12000/JR14065. ZHANG H, HONG J, QIU XL, et al. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR[J]. Frontiers of Information Technology Electronic Engineering, 2016, 17(10): 1095-1106. doi: 10.1631/FITEE.1500311. 丁昊, 董云龍, 劉寧波, 等. 海雜波特性認知研究進展與展望[J]. 雷達學報, 2016, 5(5): 499-516. doi: 10.12000/JR16069. DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/ JR16069. PLANT W J. A stochastic, multiscale model of microwave backscatter from the ocean[J]. Journal of Geophysical Research Oceans, 2002, 107(C9): 3-1-3-21. doi: 10.1029/2001 JC000909. CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Washington, DC, Artech House, 2004: 98-101. MINGQUAN B and BRUNING C. Simulation of ocean waves imaging by an along-track interferometric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 618-631. doi: 10.1109/36.581977. FRASIER S J and CAMPS A J. Dual-beam interferometry for ocean surface current vector mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 401-414. doi: 10.1109/36.905248. CHAPRON B and COLLARD F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research Oceans, 2005, 110(C7): 691-706. doi: 10.1029/2004JC002809. HIRSCH O. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities[C]. Geoscience and Remote Sensing Symposium, Sydney, 2001: 558-560. doi: 10.1109/IGARSS.2001.976221. ENJOLRAS V, VINCENT P, SOUYRIS J, et al. Performances study of interferometric radar altimeters: From the instrument to the global mission definition[J]. Sensors, 2006, 6(3): 164-192. doi: 10.3390/s6030164. -
計量
- 文章訪問數(shù): 1302
- HTML全文瀏覽量: 164
- PDF下載量: 263
- 被引次數(shù): 0