基于顯著性區(qū)域檢測(cè)和水平集的圖像快速分割算法
doi: 10.11999/JEIT170214
國(guó)家自然科學(xué)基金(61671077),福建省自然科學(xué)基金(2017J01739),福建省教育廳項(xiàng)目(JA15136),福建師范大學(xué)教學(xué)改革研究項(xiàng)目(I201602015)
Image Fast Segmentation Algorithm Based on Saliency Region Detection and Level Set
The National Natural Science Foundation of China (61671077), The Natural Science Foundation of Fujian Province (2017J01739), The Scientific Research Fund of Fujian Education Department (JA15136), The Teaching Reform Project of Fujian Normal University (I201602015)
-
摘要: 為了實(shí)現(xiàn)含有復(fù)雜背景和弱邊界圖像的快速準(zhǔn)確分割,傳統(tǒng)的水平集常采用重新初始化的方法,但是這種方法存在計(jì)算量大、分割不準(zhǔn)確等問(wèn)題。因此,結(jié)合顯著性區(qū)域,該文提出一種基于邊緣信息與區(qū)域局部信息結(jié)合的變水平集圖像快速分割方法。首先用元胞自動(dòng)機(jī)模型檢測(cè)出圖像的顯著性區(qū)域,得到圖像的初始化邊界曲線。然后,采用改進(jìn)的距離正規(guī)化水平集演化(Distance Regularized Level Set Evolution, DRLSE)模型把圖像的局部信息結(jié)合到變分能量方程中,用改進(jìn)的能量方程去指導(dǎo)曲線的演化。實(shí)驗(yàn)結(jié)果表明,與DRLSE模型相比,提出的算法平均消耗的時(shí)間只需要前者的2.76%,且具有較高的分割準(zhǔn)確性。
-
關(guān)鍵詞:
- 圖像分割 /
- 水平集方法 /
- 顯著性檢測(cè) /
- 距離正規(guī)化水平集演化
Abstract: In order to achieve fast and accurate segmentation of images with complicated background and weak boundaries, the re-initialization method is often adopted in the traditional level set function. However, this method has many problems such as large computation and inaccurate segmentation. Thus, combined with the saliency detection algorithm, a new image segmentation method of variable level set based on the combination of edge information and regional local information is proposed. Firstly, the saliency region of the image is detected by the cellular automata model to obtain initial boundary curve of the image. Then, an improved distance normalized level set evolution (Distance Regularized Level Set Evolution, DRLSE) model is used to combine the local information of the image into the variational energy equation, and the evolution of the curve is guided by the improved energy equation. Compared with the DRLSE, the experimental results show that the average time of the proposed algorithm only needs 2.76% of the former with further improvements in the accuracy of image segmentation. -
KASS M, WITKIN A, and TERZOPOULOS D. Snakes Active contour models[C]. IEEE International Conference on Computer Vision, London, UK, 1987: 259-268. CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. doi: 10.1109/83.902291. LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. doi: 10.1109/TIP.2010.2069690. ZHANG Kaihua, SONG Huihui, and ZHANG Lei. Active contours driven by local image fitting energy[J]. Pattern Recognition, 2010, 43(4): 1199-1206. doi: 10.1016/j.patcog. 2009.10.010. AGARWAL Pankhuri, KUMAR Sandeep, SINGH Rahul, et al. A combination of bias-field corrected fuzzy C-means and level set approach for brain MRI image segmentation[C]. Soft Computing and Machine Intelligence (ISCMI), Hong Kong, China, 2015: 23-24. doi: 10.1109/ISCMI.2015.16. 于海平, 何發(fā)智, 潘一騰, 等. 一種基于多特征的距離正則化水平集快速分割方法[J]. 電子學(xué)報(bào), 2017, 45(3): 534-539. doi: 10.3969/j.issn.372-2112.2017.003.004. YU Haiping, HE Fazhi, PAN Yiteng, et al. A fast distance regularized level set method for segmentation based on multi- features[J]. Acta Electronica Sinica, 2017, 45(3): 534-539. doi: 10.3969/j.issn.372-2112.2017.003.004. ITTI L, KOCH C, and NIEBUR E. A model of saliency based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. GUO Chenlei, MA Qi, and ZHANG Liming. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2008: 1-8. doi: 10.1109/ CVPR.2008.4587715. BORJI Ali, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1109/TIP. 2015.2487833. QUO Jingfan, REN Tongwei, and BEI Jia. Salient object detection for RGB-D image via saliency evolution[C]. IEEE International Conference on Multimedia and Expo, Seattle, WA, USA, 2016: 1-6. doi: 10.1109/ICME.2016.7552907. NAQVI S S, BROENE W N, and HOLLITT C. Salient object detection via spectral matting[J]. Pattern Recognition, 2016, 51(C): 209-224. doi: 10.1016/j.patcog.2015.09.026. PENG Houwen, LI Bing, LIN GHaibin, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4): 818-832. doi: 10.1109/TPAMI.2016.2562626. WANG Linzhao, WANG Lijun, LU Huchuan, et al. Saliency detection with recurrent fully convolutional Networks[C]. European Conference on Computer Vision, TIWAKI Corporation, Iwaki, Japan, 2016: 825-841. doi: 10.1007/978- 3-319-46493-0_50. KAPOOR A, BISWAS K, and HANMANDLU M. An evolutionary learning based fuzzy theoretic approach for salient object detection[J]. Visual Computer, 2017, 33(5): 665-685. doi: 10.1007/s00371-016-1216-1. SUN Jingang, LU Huchuan, and LIU Xiuping. Saliency region detection based on Markov absorption probabilities[J]. IEEE Transactions on Image Processing, 2015, 24(5): 1639-1649. doi: 10.1109/TIP.2015.2403241. LEE Gayoung, TAI Yuwing, and KIM Junmo. Deep saliency with encoded low level distance map and high level features [C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 660-668. CHOPARD Bastien and DROZ Michel. Book review: Cellular automata modeling of physical systems[J]. Journal of Statistical Physics, 1999, 97(5/6): 1031-1032. doi: 10.1023/A: 1017270215844. QIN Yao, LI Huchuan, XU Yiqun, et al. Saliency detection via sellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 110-119. doi: 10.1109/CVPR.2015.7298606. ACHANTA Radhakrishna, SHAJI Appu, SMITH Smith, et al. SLIC superpixels compared to state-of-the-artsuperpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/ TPAMI.2012.120. 鄭偉, 張晶, 楊虎. 改進(jìn)邊界指示函數(shù)的水平集活動(dòng)輪廓模型[J]. 激光技術(shù), 2016, 40(1): 126-130. doi: 10.7510/jgjs.issn. 1001-3806.2016.01.028. ZHENG Wei, ZHANG Jing, and YANG Hu. The level set active contour model with improved boundary indicator function[J]. Laser Technology, 2016, 40(1): 126-130. doi: 10.7510/jgjs.issn. 1001-3806.2016.01.028. -
計(jì)量
- 文章訪問(wèn)數(shù): 1439
- HTML全文瀏覽量: 166
- PDF下載量: 423
- 被引次數(shù): 0