一種基于概率圖模型的多時(shí)相SAR相干變化檢測方法
doi: 10.11999/JEIT170208
-
2.
(中國科學(xué)院電子學(xué)研究所微波成像技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100049)
A Multi-temporal SAR Coherent Change Detection Method Based on Probabilistic Graphical Models
-
2.
(Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
-
摘要: 相干變化檢測(CCD)利用重軌SAR數(shù)據(jù)對(duì)場景中表現(xiàn)為低相干特性的變化區(qū)域具有良好的檢測性能,然而場景中諸如植被、陰影、強(qiáng)散射旁瓣、低散射等區(qū)域也呈現(xiàn)低相干特性,對(duì)檢測結(jié)果造成干擾,尤其在高波段SAR CCD中,對(duì)檢測效果影響更加明顯。該文利用多時(shí)相SAR數(shù)據(jù)形成的相干變化差異圖像(CCD圖像)建立概率圖模型,提出一種多時(shí)相CCD處理方法。該方法以多時(shí)相CCD圖像作為觀測量,通過選取合適的參與處理圖像數(shù)量及優(yōu)化場景中變化區(qū)域的分類,計(jì)算目標(biāo)變化區(qū)域的后驗(yàn)概率,可有效減小低相干干擾區(qū)域造成的影響。仿真和實(shí)測數(shù)據(jù)結(jié)果驗(yàn)證了該方法的正確性和有效性。
-
關(guān)鍵詞:
- 重軌合成孔徑雷達(dá) /
- 相干變化檢測 /
- 多時(shí)相 /
- 概率圖模型 /
- 后驗(yàn)概率
Abstract: Coherent Change Detection (CCD) has good performance on detecting change regions with low coherence in the scene by using repeat-pass Synthetic Aperture Radar (SAR) data. However, some regions as vegetation, radar shadows, sidelobes of strong reflectivity and low reflectivity areas show low coherent character as well, which disturbs the result of change detection, especially in high frequency band SAR CCD with more evident disturbance. This paper proposes a multi-temporal CCD method by establishing a probabilistic graphical model using CCD images formed by multi-temporal SAR data. In this method, multi-temporal CCD images are used as observations to calculate a posterior probability of objective change region via choosing appropriate number of processing CCD images and optimizing the classification of change regions in the scene. The proposed method can reduce the disturbance of low coherence disturb regions effectively. The simulated and experimental results demonstrate the validity and effectiveness of the proposed method. -
LIAO Mingsheng, JIANG Liming, LIN Hui, et al. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering Remote Sensing, 2008, 74(8): 999-1006. doi: 10.14358/PERS.74.8.999. PREISS M and STACY N J S. Coherent change detection: Theoretical description and experimental results[R]. DSTO- TR-1851, 2006. JOHNSEN T. Coherent change detection in SAR images of harbors with emphasis on findings from container backscattering[C]. IEEE National Radar Conference, Kansas City, Missouri, USA, 2011: 118-123. doi: 10.1109/RADAR. 2011.5960512. JUNG J, KIM D, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765-5775. doi: 10.1109/TGRS.2016.2572166. YIN Qiang, LI Yang, HUANG Pingping, et al. Analysis of InSAR coherence loss caused by soil moisture variation [J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/ JR15075. NEWEY M, BENITZ G, and KOGON S. A generalized likelihood ratio test for SAR CCD[C]. Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, California, USA, 2012: 1727-1730. doi: 10.1109/ ACSSC.2012.6489328. 趙軍香, 梁興東, 李焱磊. 一種基于似然比統(tǒng)計(jì)量的SAR相干變化檢測[J]. 雷達(dá)學(xué)報(bào), 2017, 6(2): 186-194. doi: 10.12000/ JR16065. ZHAO Junxiang, LIANG Xingdong, and LI Yanlei. Change detection in SAR CCD based on the likelihood change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065. CHA M, PHILLIPS R D, and WOLFE P J. Test statistics for synthetic aperture radar coherent change detection[C]. IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, Michigan, USA, 2012: 856-859. doi: 10.1109/SSP.2012. 6319841. CHA M, PHILLIPS R D, WOLFE P J, et al. Two-stage change detection for synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6547-6560. doi: 10.1109/TGRS.2015.2444092. 楊祥立, 徐德偉, 黃平平, 等. 融合相干/非相干信息的高分辨率SAR圖像變化檢測[J]. 雷達(dá)學(xué)報(bào), 2015, 4(5): 582-590. doi: 10.12000/JR15073. YANG Xiangli, XU Dewei, HUANG Pingping, et al. Change detection of high resolution SAR images by the fusion of coherent/incoherent information[J]. Journal of Radars, 2015, 4(5): 582-590. doi: 10.12000/JR15073. WAHL D E, YOCKY D A, JAKOWATZ C V, et al. A new maximum-likelihood change estimator for two-pass SAR coherent change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2460-2469. doi: 10.1109/TGRS.2015.2502219. SCARBOROUGH S M, GORHAM L, MINARDI M J, et al. A challenge problem for SAR change detection and data compression[J]. SPIE Proceedings, 2010, 7699: 1-5. doi: 10. 1117/12.855378. AN Lin, LI Ming, ZHANG Peng, et al. Discriminative random fields based on maximum entropy principle for semisupervised SAR image change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3395-3404. doi: 10.1109/ JSTARS.2015.2483320. ZHOU Licun, CAO Guo, LI Yupeng, et al. Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3478-3488. doi: 10.1109/ JSTARS.2016.2514610. BARBER J and KOGON S. Probabilistic three-pass SAR coherent change detection[C]. Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, California, USA, 2012: 1723-1726. doi: 10.1109/ ACSSC.2012.6489327. 劉云龍, 周良將, 李焱磊, 等. 一種改進(jìn)的機(jī)載SAR二維空變輻射校準(zhǔn)方法[J]. 國外電子測量技術(shù), 2016, 35(8): 9-14. doi: 10.3969/j.issn.1002-8978.2016.08.003. LIU Yunlong, ZHOU Liangjiang, LI Yanlei, et al. Upgrade 2-D azimuth-variant radiometric calibration method for airborne SAR[J]. Foreign Electronic Measurement Technology, 2016, 35(8): 9-14. doi: 10.3969/j.issn.1002-8978.2016.08.003. 鄧袁. 機(jī)載重軌干涉SAR高精度配準(zhǔn)算法研究[D]. [碩士論文], 中國科學(xué)院大學(xué), 2014: 41-54. DENG Yuan. Research on highly precise registration algorithm of airborne repeat-pass interferometric SAR[D]. [Master dissertation], University of Chinese Academy of Sciences, 2014: 41-54. KOLLER D and FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques[M]. Cambridge, Massachusetts, USA London, England, The MIT Press, 2009: 45-102. TOIZI R, LOPES A, BRUNIQUEL J, et al. Coherence estimation for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149. doi: 10.1109/36.739146. -
計(jì)量
- 文章訪問數(shù): 1638
- HTML全文瀏覽量: 174
- PDF下載量: 292
- 被引次數(shù): 0