一種補(bǔ)償時(shí)變姿態(tài)的Whitt極化定標(biāo)改進(jìn)算法
doi: 10.11999/JEIT170177
基金項(xiàng)目:
國(guó)家863計(jì)劃項(xiàng)目(2013AA092105)
Improved Time-variant Attitude Compensating Whitt Polarimetric Calibration Algorithm
Funds:
National 863 Program of China (2013AA092105)
-
摘要: 極化定標(biāo)是目標(biāo)檢測(cè)、分類識(shí)別和定量反演等實(shí)際應(yīng)用的重要前提。載機(jī)平臺(tái)的姿態(tài)變化會(huì)引起極化指向角的變化,從而降低極化定標(biāo)精度。針對(duì)這一問題前人已提出了基于Whitt算法的改進(jìn)算法。該文詳細(xì)分析了這些改進(jìn)算法存在的問題,并在此基礎(chǔ)上提出了一種考慮通道不平衡的逐脈沖補(bǔ)償時(shí)變姿態(tài)的極化定標(biāo)算法,能夠有效地抑制姿態(tài)變化對(duì)極化定標(biāo)的影響。仿真實(shí)驗(yàn)和實(shí)測(cè)數(shù)據(jù)處理驗(yàn)證了該算法的有效性。
-
關(guān)鍵詞:
- 機(jī)載SAR /
- 極化定標(biāo) /
- 姿態(tài)變化 /
- 極化指向角 /
- 極化失真矩陣
Abstract: Polarization calibration is an important prerequisite for practical application such as target detection, classification recognition and quantitative inversion. The attitude variance of carrier platform can cause variance of polarization orientation angle, thus reducing the polarization calibration precision. Improved algorithms based on Whitt algorithm is proposed for this problem. In this paper, the problem of these improved algorithms is analyzed in detail, and on this basis, a polarimatric calibration algorithm, which takes channel unbalance into consider and compensates the time-varying attitude pulse by pulse, is proposed, and it can effectively suppress the influence of attitude change on polarization calibration. Simulation results and experimental data processing verify the effectiveness of the proposed algorithm. -
朱岱寅, 楊鳴冬, 宋偉, 等. 高分辨率極化合成孔徑雷達(dá)成像研究進(jìn)展[J]. 數(shù)據(jù)采集與處理, 2016, 31(4): 640-664. doi: 10.16337/j.1004-9037.2016.04.002. ZHU Daiyin, YANG Mingdong, SONG Wei, et al. Advances in high resolution polarimetric sythetic aperture radar imaging[J]. Journal of Data Acquisition and Processing, 2016, 31(4): 640-664. doi: 10.16337/j.1004-9037.2016.04.002. 張杰, 張晰, 范陳清, 等. 極化SAR在海洋探測(cè)中的應(yīng)用與探討[J]. 雷達(dá)學(xué)報(bào), 2016, 5(6): 596-606. doi: 10.12000/JR16124. ZHANG Jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124. REIGBER A, JAGER M, FISCHER J, et al. System status and calibration of the F-SAR airborne SAR instrument[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 1520-1523. doi: 10.1109/IGARSS.2011.6049357. OKADA Y, NAKAMURA S, IRIBE K, et al. System design of wide swath, high resolution, full polarimietoric L-band SAR onboard ALOS-2[C]. IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2408-2411. doi: 10.1109/IGARSS.2013.6723305. JANOTH J, GANTERT S, SCHRAGE T, et al. Terrasar next generation - mission capabilities[C]. IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2297-2300. doi: 10.1109/IGARSS.2013. 6723277. 馬曉鵬. 極化SAR定標(biāo)算法研究[D]. [博士論文], 電子科技大學(xué), 2010. MA Xiaopeng. Research on polarimetric SAR calibration algorithm[D]. [Ph.D. dissertation], University of Electronic Sience and Technology of China, 2010. 陶利, 曲圣杰, 陳曦. 簡(jiǎn)述極化SAR定標(biāo)處理技術(shù)研究進(jìn)展[J]. 遙感技術(shù)與應(yīng)用, 2016, 31(3): 459-467. doi: 10.11873/j.issn. 1004-0323.2016.3.0459. TAO Li, QU Shengjie, and CHEN Xi. The progress on research of polarimetric SAR calibration[J]. Remote Sensing Technology and Application, 2016, 31(3): 459-467. doi: 10. 11873/j.issn.1004-0323.2016.3.0459. 張臘梅, 段寶龍, 鄒斌. 極化SAR圖像目標(biāo)分解方法的研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 3289-3297. doi: 10. 11999/JEIT160992. ZHANG Lamei, DUAN Baolong, and ZOU Bin. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics Information Technology, 2016, 38(12): 3289-3297. doi: 10.11999/ JEIT160992. VAN ZYL J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J]. IEEE Transactions on Geoscience Remote Sensing, 1990, 28(3): 337-348. doi: 10.1109/36.54360. FREEMAN A, SHEN Y, and WERNER C L. Polarimetric SAR calibration experiment using active radar calibrators[J]. IEEE Transactions on Geoscience Remote Sensing, 1990, 28(2): 224-240. doi: 10.1109/36.46702. WHITT M W, ULABY F T, POLATIN P, et al. A general polarimetric radar calibration technique[J]. IEEE Transactions on Antennas Propagation, 1991, 39(1): 62-67. doi: 10.1109/8.64436. QUEGAN S. A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations[J]. IEEE Transactions on Geoscience Remote Sensing, 1994, 32(1): 89-99. doi: 10.1109/36.285192. MING Feng, HONG Jun, and ZHANG Lintao. Improved calibration method of the airborne polarimetric SAR[C]. International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, South Korea, 2011: 1-3. HU Dingsheng, QIU Xiaolan, HU Donghui, et al. Improved airborne PolSAR calibration algorithm based on time-variant attitude compensation[J]. International Journal of Remote Sensing, 2015, 36(12): 3184-3195. doi: 10.1080/2150704X. 2015.1054042. HUYNEN J R. Phenomenological theory of radar targets[J]. Electromagnetic Scattering, 1978: 653-712. doi: 10.1016/ B978-0-12-709650-6.50020-1. FREEMAN A. SAR calibration: an overview[J]. IEEE Transactions on Geoscience Remote Sensing, 1992, 30(6): 1107-1121. doi: 10.1109/36.193786. -
計(jì)量
- 文章訪問數(shù): 1146
- HTML全文瀏覽量: 185
- PDF下載量: 235
- 被引次數(shù): 0