基于顯著度融合的自適應(yīng)分塊行人再識(shí)別
doi: 10.11999/JEIT170162
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61379151, 61521003),河南省杰出青年基金(144100510001)
Person Re-identification of Adaptive Blocks Based on Saliency Fusion
Funds:
The National Natural Science Foundation of China (61379151, 61521003), Outstanding Youth Foundation of Henan Province (144100510001)
-
摘要: 針對(duì)基于分塊匹配的行人再識(shí)別中對(duì)分塊的規(guī)則和大小缺乏指導(dǎo),以及不同分塊間的區(qū)分度差異問題,該文提出基于顯著度融合的自適應(yīng)分塊行人再識(shí)別方法。首先,利用啟發(fā)式思想確定初始聚類中心,并根據(jù)圖像內(nèi)容自動(dòng)確定分塊的大小和數(shù)目。然后,利用歸一化部分曲線下面積計(jì)算各塊的圖像間顯著度,利用結(jié)構(gòu)化支持向量機(jī)學(xué)習(xí)各塊的圖像內(nèi)顯著度,并融合兩類顯著度得到各塊的權(quán)重作為匹配得分融合的依據(jù)。實(shí)驗(yàn)證明,在常用的行人再識(shí)別數(shù)據(jù)集上,該方法能取得較好的識(shí)別結(jié)果。
-
關(guān)鍵詞:
- 行人再識(shí)別 /
- 分塊匹配 /
- 自適應(yīng)分塊 /
- 啟發(fā)式聚類 /
- 顯著度融合
Abstract: In this paper, an adaptive block person re-identification method based on saliency fusion is proposed to solve the problems of the lack of guidance on the rule and size of block in the block matching-based person re-identification, and the differentiation degree between different blocks. Firstly, the heuristic idea is used to determine the initial clustering center, and the size and number of blocks are determined automatically according to the image content. Then, the intra-image salience of each block is calculated using the Area Under the normalized partial Curve (pAUC), the intra-image salience of each block is learned by structured SVM, and the weights of each block are fused as the base of matching Score fusion. Experiments show that this method can achieve better recognition results on the commonly used person re-identification data sets.-
Key words:
- Person re-identification /
- Block matching /
- Adaptive blocks /
- Heuristic clustering /
- Saliency fusion
-
ZHENG W S, GONG S, and XIANG T. Reidentification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 653-668. doi: 10.1109/TPAMI.2012.138. ZHANG L, KALASHNIKOV D V, MEHROTRA S, et al. Context-based person identification framework for smart video surveillance[J]. Machine Vision Applications, 2014, 25(7): 1711-1725. doi: 10.1007/s00138-013-0535-8. HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824. 齊美彬, 檀勝順, 王運(yùn)俠, 等. 基于多特征子空間與核學(xué)習(xí)的行人再識(shí)別[J]. 自動(dòng)化學(xué)報(bào), 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344. QI Meibin, TAN Shengshun, WANG Yunxia, et al. Multi- feature subspace and kernel learning for pedestrian re- identification[J]. Automation Journal, 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344. 曾明勇, 吳澤民, 田暢, 等. 基于外觀統(tǒng)計(jì)特征融合的人體目標(biāo)再識(shí)別[J]. 電子與信息學(xué)報(bào), 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389. ZENG Mingyong, WU Zemin, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics Information Technology, 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389. FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Computer Vision and Pattern Recognition, San Francisco, California, USA, 2010: 2360-2367. doi: 10. 1109/CVPR.2010.5539926. ZHAO R, OUYANG W, and WANG X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013.460. ZHAO R, OUYANG W and WANG X. Learning mid-level filters for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 144-151. doi: 10.1109/ CVPR.2014.26. ZHANG L, LI K, ZHANG Y, et al. Adaptive image segmentation based on color clustering for person re-identification[J]. Soft Computing, 2016, 36(2): 1-11. doi: 10.1007/s00500-016-2150-x. ENDRES I and HOIEM D. Category-independent object proposals with diverse ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 222-234. doi: 10.1109/ TPAMI.2013.122. ALEXE B, DESELAERS T, and FERRARI V. What is an object?[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, California, USA, 2010: 73-80. doi: 10.1109/CVPR. 2010.5540226. JIANG F, JIA L, SHENG X, et al. Manifold regularization in structured output space for semi-supervised structured output prediction[J]. Neural Computing Applications, 2016, 27(8): 2605-2614. doi: 10.1007/s00521-015-2029-2. JOACHIMS T, FINLEY T, and YU C N J. Cutting-plane training of structural SVMs[J]. Machine Learning, 2009, 77(1): 27-59. doi: 10.1007/s10994-009-5108-8. LI Wei and WANG Xiaogang. Locally aligned feature transforms across views[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3594-3601. doi: 10.1109/CVPR. 2013.461. SCHWARTZ W R and DAVIS L S. Learning discriminative appearance-based models using partial least squares[C]. Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing, Rio De Janeiro, Brazil, 2009: 322-329. doi: 10.1109/SIBGRAPI.2009.42. DING S, LIN L, WANG G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003. doi: 10.1016/j. patcog.2015.04.005. 陳瑩, 霍中花. 多方向顯著性權(quán)值學(xué)習(xí)的行人再識(shí)別[J]. 中國(guó)圖象圖形學(xué)報(bào), 2015, 20(12): 1674-1683. doi: 10.11834/ jig.20151212. CHEN Ying and HUO Zhonghua. Person re-identification based on multi-directional saliency metric learning[J]. Journal of Image and Graphics, 2015, 20(12): 1674-1683. doi: 10.11834/jig.20151212. MARTIN Hirzer, PETER M Roth, MARTIN Kostinger, et al. Relaxed pairwise learned metric for person re-identification [C]. Proceedings of the IEEE European Conference on Computer Vision, Firenze, Italy, 2012: 780-793. doi: 10.1007/ 978-3-642-33783-3_56. DONG Yi, ZHEN Lei, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. Proceedings of International Conference on Pattern Recognition, Sweden, 2014: 34-39. doi: 10.1109/ICPR.2014.16. -
計(jì)量
- 文章訪問數(shù): 1381
- HTML全文瀏覽量: 145
- PDF下載量: 318
- 被引次數(shù): 0