一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于顯著度融合的自適應(yīng)分塊行人再識(shí)別

陳鴻昶 陳雷 李邵梅 朱俊光

陳鴻昶, 陳雷, 李邵梅, 朱俊光. 基于顯著度融合的自適應(yīng)分塊行人再識(shí)別[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
引用本文: 陳鴻昶, 陳雷, 李邵梅, 朱俊光. 基于顯著度融合的自適應(yīng)分塊行人再識(shí)別[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
CHEN Hongchang, CHEN Lei, LI Shaomei, ZHU Junguang. Person Re-identification of Adaptive Blocks Based on Saliency Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
Citation: CHEN Hongchang, CHEN Lei, LI Shaomei, ZHU Junguang. Person Re-identification of Adaptive Blocks Based on Saliency Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162

基于顯著度融合的自適應(yīng)分塊行人再識(shí)別

doi: 10.11999/JEIT170162
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61379151, 61521003),河南省杰出青年基金(144100510001)

Person Re-identification of Adaptive Blocks Based on Saliency Fusion

Funds: 

The National Natural Science Foundation of China (61379151, 61521003), Outstanding Youth Foundation of Henan Province (144100510001)

  • 摘要: 針對(duì)基于分塊匹配的行人再識(shí)別中對(duì)分塊的規(guī)則和大小缺乏指導(dǎo),以及不同分塊間的區(qū)分度差異問題,該文提出基于顯著度融合的自適應(yīng)分塊行人再識(shí)別方法。首先,利用啟發(fā)式思想確定初始聚類中心,并根據(jù)圖像內(nèi)容自動(dòng)確定分塊的大小和數(shù)目。然后,利用歸一化部分曲線下面積計(jì)算各塊的圖像間顯著度,利用結(jié)構(gòu)化支持向量機(jī)學(xué)習(xí)各塊的圖像內(nèi)顯著度,并融合兩類顯著度得到各塊的權(quán)重作為匹配得分融合的依據(jù)。實(shí)驗(yàn)證明,在常用的行人再識(shí)別數(shù)據(jù)集上,該方法能取得較好的識(shí)別結(jié)果。
  • ZHENG W S, GONG S, and XIANG T. Reidentification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 653-668. doi: 10.1109/TPAMI.2012.138.
    ZHANG L, KALASHNIKOV D V, MEHROTRA S, et al. Context-based person identification framework for smart video surveillance[J]. Machine Vision Applications, 2014, 25(7): 1711-1725. doi: 10.1007/s00138-013-0535-8.
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824.
    齊美彬, 檀勝順, 王運(yùn)俠, 等. 基于多特征子空間與核學(xué)習(xí)的行人再識(shí)別[J]. 自動(dòng)化學(xué)報(bào), 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344.
    QI Meibin, TAN Shengshun, WANG Yunxia, et al. Multi- feature subspace and kernel learning for pedestrian re- identification[J]. Automation Journal, 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344.
    曾明勇, 吳澤民, 田暢, 等. 基于外觀統(tǒng)計(jì)特征融合的人體目標(biāo)再識(shí)別[J]. 電子與信息學(xué)報(bào), 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389.
    ZENG Mingyong, WU Zemin, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics Information Technology, 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389.
    FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Computer Vision and Pattern Recognition, San Francisco, California, USA, 2010: 2360-2367. doi: 10. 1109/CVPR.2010.5539926.
    ZHAO R, OUYANG W, and WANG X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013.460.
    ZHAO R, OUYANG W and WANG X. Learning mid-level filters for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 144-151. doi: 10.1109/ CVPR.2014.26.
    ZHANG L, LI K, ZHANG Y, et al. Adaptive image segmentation based on color clustering for person re-identification[J]. Soft Computing, 2016, 36(2): 1-11. doi: 10.1007/s00500-016-2150-x.
    ENDRES I and HOIEM D. Category-independent object proposals with diverse ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 222-234. doi: 10.1109/ TPAMI.2013.122.
    ALEXE B, DESELAERS T, and FERRARI V. What is an object?[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, California, USA, 2010: 73-80. doi: 10.1109/CVPR. 2010.5540226.
    JIANG F, JIA L, SHENG X, et al. Manifold regularization in structured output space for semi-supervised structured output prediction[J]. Neural Computing Applications, 2016, 27(8): 2605-2614. doi: 10.1007/s00521-015-2029-2.
    JOACHIMS T, FINLEY T, and YU C N J. Cutting-plane training of structural SVMs[J]. Machine Learning, 2009, 77(1): 27-59. doi: 10.1007/s10994-009-5108-8.
    LI Wei and WANG Xiaogang. Locally aligned feature transforms across views[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3594-3601. doi: 10.1109/CVPR. 2013.461.
    SCHWARTZ W R and DAVIS L S. Learning discriminative appearance-based models using partial least squares[C]. Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing, Rio De Janeiro, Brazil, 2009: 322-329. doi: 10.1109/SIBGRAPI.2009.42.
    DING S, LIN L, WANG G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003. doi: 10.1016/j. patcog.2015.04.005.
    陳瑩, 霍中花. 多方向顯著性權(quán)值學(xué)習(xí)的行人再識(shí)別[J]. 中國(guó)圖象圖形學(xué)報(bào), 2015, 20(12): 1674-1683. doi: 10.11834/ jig.20151212.
    CHEN Ying and HUO Zhonghua. Person re-identification based on multi-directional saliency metric learning[J]. Journal of Image and Graphics, 2015, 20(12): 1674-1683. doi: 10.11834/jig.20151212.
    MARTIN Hirzer, PETER M Roth, MARTIN Kostinger, et al. Relaxed pairwise learned metric for person re-identification [C]. Proceedings of the IEEE European Conference on Computer Vision, Firenze, Italy, 2012: 780-793. doi: 10.1007/ 978-3-642-33783-3_56.
    DONG Yi, ZHEN Lei, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. Proceedings of International Conference on Pattern Recognition, Sweden, 2014: 34-39. doi: 10.1109/ICPR.2014.16.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1381
  • HTML全文瀏覽量:  145
  • PDF下載量:  318
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-02-24
  • 修回日期:  2017-04-27
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回