密集小蜂窩網(wǎng)絡(luò)上行性能分析與導(dǎo)頻調(diào)度
doi: 10.11999/JEIT170161
-
2.
(南通大學(xué)電子信息學(xué)院 南通 226019) ②(東南大學(xué)移動(dòng)通信國(guó)家重點(diǎn)實(shí)驗(yàn)室 南京 210096) ③(慕尼黑工業(yè)大學(xué)通信工程學(xué)院 慕尼黑 D-80333)
國(guó)家自然科學(xué)基金(61501264),東南大學(xué)國(guó)家移動(dòng)通信重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(2015D02)
Uplink Performance Analysis and Pilot Scheduling for Dense Small-cell Networks
-
2.
(School of Electronic and Information Engineering, Nantong University, Nantong 226019, China)
The National Natural Science Foundation of China (61501264), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2015D02)
-
摘要: 考慮導(dǎo)頻資源受限的密集小蜂窩網(wǎng)絡(luò),該文采用基于導(dǎo)頻復(fù)用的最小均方誤差估計(jì)進(jìn)行信道估計(jì),推導(dǎo)出各種導(dǎo)頻復(fù)用因子下采用最大比合并接收的上行可達(dá)速率表達(dá)式。由于嚴(yán)重的導(dǎo)頻污染,會(huì)制約密集小蜂窩網(wǎng)絡(luò)的上行凈可達(dá)和速率。為了最大化上行可達(dá)和速率,提出利用大尺度衰落信道信息的貪婪導(dǎo)頻調(diào)度算法減少導(dǎo)頻污染,在此基礎(chǔ)上,提出低復(fù)雜度半動(dòng)態(tài)導(dǎo)頻調(diào)度算法確定最佳導(dǎo)頻復(fù)用因子。仿真結(jié)果驗(yàn)證了理論推導(dǎo),所提出的半動(dòng)態(tài)導(dǎo)頻調(diào)度算法能夠減少導(dǎo)頻開(kāi)銷,有效地減輕導(dǎo)頻污染并提升上行凈可達(dá)和速率。
-
關(guān)鍵詞:
- 密集小蜂窩網(wǎng)絡(luò) /
- 導(dǎo)頻調(diào)度 /
- 最大比合并
Abstract: Considering Dense Small-Cell Networks (DSCNs) with limited pilot resource, estimating channel is carried out using pilot-reused Minimum Mean Square Error (MMSE) estimator, and then exact expressions of the uplink achievable rate are derived with maximal ratio combing receiver for arbitrary pilot reuse factors. Severer pilot contamination will result in degrading the uplink net achievable sum rate. To maximize uplink achievable sum rate, a greedy pilot scheduling algorithm is proposed using large-scale fading channel information to reduce pilot contamination. On this basis, a low-complexity semi-dynamic pilot scheduling algorithm is proposed to determine best pilot reuse factor. Simulation results are presented to verify the theoretical derivation, and the proposed semi-dynamic pilot scheduling algorithm can reduce pilot overhead, mitigate pilot contamination and boost uplink net achievable sum rate. -
KAMELl M, HAMOUDA W, and YOUSSEF A. Ultra-dense networks: A survey[J]. IEEE Communications Surveys Tutorials, 2016, 18(4): 2522-2545. doi: 10.1109/COMST.2016. 2571730. LPEZ-PREZ D, DING M, CLAUSSEN H, et al. Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 2078-2101. doi: 10.1109/COMST.2015. 2439636. SHEN J C, ZHANG J, and LETAIEF K B. Downlink user capacity of massive MIMO under pilot contamination[J]. IEEE Transactions on Wireless Communications, 2015, 14(6): 3183-3193. doi: 10.1109/TWC.2015.2403317. CHOI J, LOVE D J, and BIDIGARE P. Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 802-814. doi: 10.1109/JSTSP.2014.2313020. MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092. 胡瑩, 黃永明, 俞菲, 等. 多用戶大規(guī)模MIMO 系統(tǒng)能效資源分配算法[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. HU Ying, HUANG Yongming, YU Fei, et al. Energy-efficient resource allocation based on multi-user massive MIMO system[J]. Journal of Electronics Information Technology, 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. FEMANDES F, ASHIKHMIN A, and MARZETTA T L. Inter-cell interference in noncooperative TDD large scale antenna systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2): 192-201. doi: 10.1109/JSAC. 2013.130208. ASHIKHMIN A and MARZETTA T. Pilot contamination precoding in multi-cell large scale antenna systems[C]. IEEE International Symposium on Information Theory Proceedings (ISIT), Cambridge, MA, 2012: 1137-1141. doi: 10.1109/ISIT.2012.6283031. YANG H and MARZETTA T L. Performance of pilot reuse in multi-cell massive MIMO[C]. IEEE International Black Sea Conference on Communications and Networking (Black SeaCom), Constanta, 2015: 157-161. doi: 10.1109/BlackSea Com.2015.7185106. NGO H Q, ASHIKHMIN A, YANG H, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850. doi: 10.1109/TWC. 2017.2655515. NGUYEN V D and SHIN O S. Performance analysis of ZF receivers with imperfect CSI for uplink massive MIMO systems[J]. Telecommunication Systems, 2016, 65(2): 1-12. doi: 10.1007/s11235-016-0225-8. PAPAZAFEIROPOULOS A, NGO H, and RATNARAJAH T. Performance of massive MIMO uplink with zero-forcing receivers under delayed channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3158-3169. doi: 10.1109/ TVT.2016.2594031. KAILATH T, SAVED A H, and HASSIBI B. Linear Estimation[M]. Upper Saddle River, NJ: Prentice Hall, 2000: 23-112. SHIN H and WIN M Z. MIMO diversity in the presence of double scattering[J]. IEEE Transactions on Information Theory, 2008, 54(7): 2976-2996. doi: 10.1109/TIT.2008. 924672. SUN Q, JIN S, WANG J, et al. Downlink massive distributed antenna systems scheduling[J]. IET Communications, 2015, 9(7): 1006-1016. doi: 10.1049/IET-COM.2014.0775. -
計(jì)量
- 文章訪問(wèn)數(shù): 1198
- HTML全文瀏覽量: 99
- PDF下載量: 475
- 被引次數(shù): 0