一種雙基星載MIMO SAR系統(tǒng)體制與處理方法
doi: 10.11999/JEIT170149
-
2.
(中國(guó)科學(xué)院電子學(xué)研究所 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100049)
Investigation on System Scheme and Processing Approach for Bistatic Spaceborne MIMO SAR
-
2.
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
-
摘要: 雙基星載合成孔徑雷達(dá)(SAR)利用雙平臺(tái)接收以及聯(lián)合處理回波信號(hào),在測(cè)繪、干涉測(cè)量、目標(biāo)識(shí)別、自然災(zāi)害監(jiān)測(cè)等領(lǐng)域有重要的應(yīng)用價(jià)值。為了進(jìn)一步提升該體制的成像性能,該文提出一種采用空時(shí)編碼和短偏移正交波形的雙基星載多發(fā)多收合成孔徑雷達(dá)系統(tǒng)(MIMO SAR)。基于接收端的數(shù)字波束形成技術(shù),該系統(tǒng)能夠有效分離提取不同波形回波數(shù)據(jù),獲取更多空間自由度,從而同時(shí)具備雙基體制和MIMO體制的優(yōu)勢(shì)。此外,通過(guò)對(duì)獲取的不同波形圖像數(shù)據(jù)做波束形成處理,該系統(tǒng)能夠減輕2次散射干擾回波對(duì)SAR圖像的影響。仿真實(shí)驗(yàn)驗(yàn)證了該系統(tǒng)方案的有效性。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 多發(fā)多收 /
- 雙基 /
- 數(shù)字波束形成
Abstract: Benefiting from the combined processing of echo signals received on spatially separated platforms, bistatic spaceborne SAR has many valuable applications such as survey, interferometry, target recognition and classification, disaster monitoring, etc. In order to improve the imaging performance further, this paper presents a bistatic spaceborne Multiple-Input Multiple-Output SAR (MIMO SAR) system combined with Space-Time Coding (STC) and Short-Term Shift-Orthogonal (STSO) chirp waveforms. With the help of digital beamforming techniques on receive, different transmitting waveforms can be separated and extracted from mixed echoes, so that such enhanced architecture can achieve the advantages of both bistatic and MIMO configuration from more spatial degrees of freedom. Furthermore, it offers an opportunity for mitigating the influences of double-bounce scattering by using beamforming on multiple SAR images. The theoretical analysis is derived in detail, then validated by simulation experiments.-
Key words:
- SAR /
- Multiple-Input Multiple-Output (MIMO) /
- Bistatic /
- Digital Beam Forming (DBF)
-
MARC R, PRATS P, SCHULZE D, et al. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 33-37. doi: 10.1109/LGRS.2011.2158984. ZINK M, BACHMANN M, BRAUTIGAM B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8-23. doi: 10.1109/MGRS.2014.2318895. BUESO J, PRATS P, MARTONE M, et al. Performance evaluation of the TanDEM-X quad polarization acquisitions in the science phase[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 627-632. MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. doi: 10.1109/MGRS.2015.2437353. HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 1237-1241. WANG Wenqin. MIMO SAR imaging: potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18-23. doi: 10.1109/MAES.2013. 6575407. KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. doi: 10.1109/TGRS.2014.2360148. KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 91-96. WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. doi: 10.1109/TGRS.2014.2346478. KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 187-192. MENG Cangzhen, XU Jia, XIA Xianggen, et al. MIMO-SAR waveform separation based on inter-pulse phase modulation and range-doppler decouple filtering[J]. Electronics Letters, 2013, 49(6): 420-422. doi: 10.1049/el.2013.0016. KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. doi: 10.1109/TGRS.2007.905974. KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. doi: 10.1109/TGRS.2013.2263934. KIM J, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568-572. doi: 10.1109/LGRS.2012.2213577. WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. doi: 10.1109/TGRS. 2015.2419271. WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094-3104. doi: 10.1109/ TGRS.2011.2116030. WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space-time coding scheme used for MIMO-SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. doi: 10.1109/LGRS.2015.2412961. FENG Fan, LI Shiqiang, YU Weidong, et al. Echo separation in multi- dimensional waveform encoding SAR remote sensing using an advanced null-steering beam-former[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4157-4172. doi: 10.1109/TGRS.2012.2187905. VAN TREES H. L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley Sons, 2002: 90-204. KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. doi: 10.1109/LGRS.2004. 832700. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1131
- HTML全文瀏覽量: 109
- PDF下載量: 210
- 被引次數(shù): 0