基于DOA和TDOI的主瓣掃描輻射源定位方法
doi: 10.11999/JEIT170141
-
2.
(國防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院 長沙 410073)
基金項目:
上海航天科技創(chuàng)新基金項目(SAST2015028)
Scanning Emitter Localization Using DOA and TDOI Measurements
-
2.
(College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)
Funds:
Shanghai Aerospace Science and Technology Innovation Fund (SAST2015028)
-
摘要: 針對具有已知掃描周期特性的輻射源無源定位問題,該文提出一種基于主瓣到達角(DOA)和掃描截獲時間差(TDOI)的聯(lián)合定位體制。通過對其定位誤差的克拉美-羅下限(CRLB)推導(dǎo),給出了聯(lián)合定位體制的性能與DOA和信號截獲時間(TOI)觀測量的等效測角噪聲功率比的關(guān)系。為了利用非線性聯(lián)合觀測量確定掃描輻射源的位置,通過將TDOI觀測量轉(zhuǎn)換成等效DOA觀測量,給出一種加權(quán)偽線性最小二乘(WPLS)定位方法;為消除觀測矩陣相關(guān)噪聲導(dǎo)致的WPLS估計偏差,提出了一種加權(quán)輔助變量(WIV)定位方法,算法復(fù)雜度約為WPLS算法的2倍。仿真結(jié)果表明,WIV方法的定位誤差在輻射源單個掃描周期內(nèi)即可達到CRLB,定位性能與極大似然(ML)定位方法相當(dāng);隨著觀測次數(shù)的增多,WIV方法可以漸近達到無偏估計。Abstract: The determination of the scanning emitter position with known scan rate using Direction Of Arrival (DOA) and Time Difference Of Interception (TDOI) is investigated. The Cramr-Rao Lower Bound (CRLB) of the DOA and TDOI based localization regime is firstly derived. It demonstrates that the equivalent DOA measurements noise power ratio of the individual regime is closely related to the improvement of the combination regime. To exclusively determine the position of the scanning emitter, the TOI measurements are transformed to the corresponding DOA measurements and then a Weighted Pseudo-linear Least Square (WPLS) estimator is proposed. However, the WPLS is biased due to the noise correlation between the regressor and regressand of the pseudo-linear equation. The Instrumental Variable (IV) method is resorted to eliminate the bias caused by the WPLS, and a Weighted IV (WIV) estimator, at the cost of two times computational complexity of the WPLS, is proposed. Simulations show that the WIV performs approximately to the Maximum Likelihood (ML) estimator. It can reach the CRLB in one scan cycle, and is asymptotic unbiased within multiple cycles.
-
孫仲康, 郭福成, 馮道旺, 等. 單站無源定位跟蹤技術(shù)[M]. 北京: 國防工業(yè)出版社, 2008: 3-10. SUN Zhongkang, GUO Fucheng, FENG Daowang, et al. Single Observer Passive Location and Tracking Technology [M]. Beijing: National Defense Industry Press, 2008: 3-10. WANG Y and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535. doi: 10.1109/TWC.2015.2456057. NGUYEN N H and DOGANCAY K. Optimal geometry analysis for multistatic TOA localization[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4180-4193. doi: 10.1109/TSP.2016.2566611. KALANTARI A, MALEKI S, CHATZINOTAS S, et al. Frequency of arrival-based interference localization using a single satellite[C]. 2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), Palma de Mallorca, 2016: 1-6. LIU Y, GUO F, YANG L, et al. An improved algebraic solution for TDOA localization with sensor position errors[J]. IEEE Communications Letters, 2015, 19(12): 2218-2221. doi: 10.1109/LCOMM.2015.2486769. 李金洲, 郭福成. 傳感器誤差條件下僅用到達頻率差的無源定位性能分析[J]. 航空學(xué)報, 2011, 32(8): 1497-1505. LI Jinzhou and GUO Fucheng. Performance analysis for passive source localization using merely FDOA measurements with erroneous receiver positions[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1497-1505. LIU D, LIU K, MA Y, et al. Joint TOA and DOA localization in indoor environment using virtual stations[J]. IEEE Communications Letters, 2014, 18(8): 1423-1426. doi: 10.1109/LCOMM.2014.2333006. CHAN Y T and RUDNICKI S W. Bearings-only and Doppler-bearing tracking using instrumental variables[J]. IEEE Transactions on Aerospace Electronic Systems, 1992, 28(4): 1076-1083. doi: 10.1109/7.165369. YIN J, WAN Q, YANG S, et al. A simple and accurate TDOA-AOA localization method using two stations[J]. IEEE Signal Processing Letters, 2016, 23(1): 144-148. doi: 10.1109/ LSP.2015.2505138. HMAM H. Optimal sensor velocity configuration for TDOA- FDOA geolocation[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 628-637. doi: 10.1109/TSP.2016. 2621724. HMAM H. Scan-based emitter passive localization[J]. IEEE Transactions on Aerospace Electronic Systems, 2007, 43(1): 36-54. doi: 10.1109/TAES.2007.357153. AIDALA V J and NARDONE S C. Biased estimation properties of the pseudo-linear tracking filter[J]. IEEE Transactions on Aerospace Electronic Systems, 1982, 18(4): 432-441. doi: 10.1109/TAES.1982.309250. NARDONE S C, LINDGREN A G, and GONG K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Transactions on Automatic Control, 1984, 29(9): 775-787. doi: 10.1109/ TAC.1984.1103664. DOGANCAY K. Passive emitter localization using weighted instrumental variables[J]. Signal Processing, 2004, 84(3): 487-497. doi: 10.1016/j.sigpro.2003.11.014. HMAM H and DOGANCAY K. Passive localization of scanning emitters[J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(2): 944-951. doi: 10.1109/TAES. 2010.5461671. DOGANCAY K. A closed-form pseudolinear estimator for geolocation of scanning emitters[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, 2010: 3546-3549. KAY S M. 統(tǒng)計信號處理基礎(chǔ)-卷I估計理論[M]. 羅鵬飛, 張文明, 劉忠, 等譯. 北京: 電子工業(yè)出版社, 2014: 3-10, 23-41, 129-155. ZHANG Y F, ZHANG M, and GUO F C. Scanning emitter TMA by two fixed observers using time of interception[C]. IEEE 2016 Sensor Signal Processing for Defence (SSPD), Edinburgh, UK, 2016: 144-148. BECKER K. Simple linear theory approach to TMA observability[J]. IEEE Transactions on Aerospace Electronic Systems, 1993, 29(2): 575-578. doi: 10.1109/ 7.210096. 張賢達. 矩陣分析與應(yīng)用[M]. 第2版, 北京: 清華大學(xué)出版社, 2013: 54-61. ZHANG Xianda. Matrix Analysis and Applications[M]. Second Edition, Beijing: Tsinghua University Press, 2013: 54-61. NGUYEN N H and DOGANCAY K. Single-platform passive emitter localization with bearing and Doppler-shift measurements using pseudolinear estimation techniques[J]. Signal Processing, 2016, 125: 336-348. doi: 10.1016/j.sigpro. 2016.01.023. DOGANCAY K. Self-localization from landmark bearings using pseudolinear estimation techniques[J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(3): 2361-2368. doi: 10.1109/TAES.2014.130461. WONG K Y and POLAK E. Identification of linear discrete time systems using the instrumental variable method[J]. IEEE Transactions on Automatic Control, 1967, 12(6): 707-718. doi: 10.1109/TAC.1967.1098734. -
計量
- 文章訪問數(shù): 1082
- HTML全文瀏覽量: 96
- PDF下載量: 236
- 被引次數(shù): 0