Research on Antenna Radar Cross Section Reduction Based on Reconfigurable Frequency Selective Surface
Funds:
The National Natural Science Foundation of China (61501372)
-
摘要: 針對天線雷達截面減縮問題,該文提出一種基于二極管控制的可重構(gòu)頻率選擇表面結(jié)構(gòu),并將其用于天線的雷達截面減縮技術(shù)。論文將可重構(gòu)技術(shù)應(yīng)用于頻率選擇表面設(shè)計,使得頻率選擇表面可以在帶通型以及帶阻型之間進行相互切換。為了在保證天線輻射特性的前提下降低天線的雷達截面,該文考慮將可重構(gòu)頻率選擇表面作為天線反射板用以置換一般的金屬反射板。通過二極管導(dǎo)通/截斷使得可重構(gòu)頻率選擇表面反射板處于不同狀態(tài),以實現(xiàn)天線在不同工作狀態(tài)下的RCS減縮控制及切換。仿真及實測結(jié)果表明,使用可重構(gòu)頻率選擇表面反射板,天線雷達截面的最大減縮量可達20 dB以上,減縮角域可達-60+60,同時天線的輻射特性幾乎未發(fā)生變化。該方法可在保證天線輻射特性的基礎(chǔ)上極大程度降低天線的雷達截面,并能做到天線雷達截面減縮頻段的可重構(gòu)。Abstract: Active reconfigurable Frequency Selective Surface (FSS) using pin diode for the Radar Cross Section (RCS) reduction of antenna is proposed. The reconfigurable technology is applied to the FSS design. The reconfigurable FSS reflector is able to perform switch between band-pass FSS and band-stop FSS. The active reconfigurable FSS with pin diodes applies to the antenna reflector for the antenna RCS reduction, and the radiation performance of the antenna is preserved. Through the diode is on or off, the reconfigurable FSS reflectors are different states. It can contribute to the reconfigurable RCS reduction of dipole antenna under different working conditions. The simulated and measured results show the largest RCS reduction is more than 20dB, and the RCS reduction region is-60+60. The radiation performance of the antenna is preserved when the diodes are ON-state. The active reconfigurable FSS provide a good method to solve the conflict between the gain enhancement and the RCS reduction. The reduction band and the state of the RCS can be switched by pin diodes.
-
Key words:
- Antenna /
- Radar Cross Section (RCS) /
- Reconfigurable /
- Frequency Selective Surface (FSS)
-
周禹龍, 曹祥玉, 高軍, 等. 雙頻頻率選擇表面及其在微帶天線寬帶RCS 減縮中的應(yīng)用[J]. 電子與信息學報, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854. ZHOU Y L, CAO X Y, GAO J, et al. Dualband frequncey selective surface and its application to wideband RCS reduction of the microstrip antenna[J]. Journal of Electronics Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854. 張晨, 曹祥玉, 高軍, 等. 低RCS寬帶磁電偶極子貼片天線設(shè)計[J]. 電子與信息學報, 2016, 38(4): 1012-1016. doi: 10.11999 /JEIT150897. ZHANG C, CAO X Y, GAO J, et al. Low radar cross section and broadband magneto-electric dipole patch antenna[J]. Journal of Electronics Information Technology, 2016, 38(4): 1012-1016. doi: 10.11999/JEIT150897. PAN W B, HUANG C, CHEN P, et al. A Low-RCS and high-gain partially reflecting surface antenna[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945-949. doi: 10.1109/TAP.2013.2291008. JIANG W, LIU Y, GONG S X, et al. Application of bionics in antenna radar cross section reduction[J]. IEEE Antenna and Wireless Propagation Letters, 2009, 8: 1275-1278. doi: 10.1109/LAWP.2009.2037168. WANG F W, JIANG W, HONG T, et al. RCS reduction of wideband antenna with a novel wideband radar absorbing materials[J]. IET Microwaves, Antennas Propagation, 2014, 8(7): 491-497. doi: 10.1049/iet-map.2013.0356. OUEDRAOGO R O, ROTHWELL E J, and GREETIS B J. A reconfigurable microstrip leaky- wave antenna with a broadly steerable beam[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 3080-3083. doi: 10.1109/TAP. 2011.2158970. WANG B Z, XIAO S Q, and WANG J. Reconfigurable patch antenna design for wideband wireless communication systems [J]. IET Microwaves, Antennas and Propagation, 2007, 1(6): 414-419. doi: 10.1049/iet-map:20050349. PIAZZA D, MOOKIAH P, DAMIOO M, et al. Experimental analysis of pattern and polarization reconfigurable circular patch antennas for MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2352-2362. doi: 10.1109/ TVT.2010.2043275. CAI Y X and DU Z W. A novel pattern reconfigurable antenna array for diversity systems[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1227-1230. doi: 10.1109/LAWP.2009.2035720. LAI M I, WU T Y, HSIEH J C, et al. Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices[J]. IET Microwaves, Antennas and Propagation, 2009, 3(1): 47-54. doi: 10.1049/iet-map: 20080049. CHANG W J, LI M, LI G P, et al. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 455-463. doi: 10.1109/TAP.2005.863407. 官正濤, 何海丹, 何慶強. 一種基于可重構(gòu)機理的微帶天線RCS縮減技術(shù)[J]. 成都大學學報, 2014, 33(4): 362-364. GUAN Z T, HE H D, and HE Q Q. Reconfigurable microstrip antenna RCS reduction technique[J]. Journal of Chengdu University, 2014, 33(4): 362-364. HUANG C, PAN W B, MA X L, et al. Low-loss circularly polarized transmitarray for beam steering application[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4471-4476. doi: 10.1109/TAP.2016.2586580. 王夫蔚, 龔書喜, 張鵬飛, 等. 結(jié)構(gòu)型吸波材料在陣列天線RCS減縮中的應(yīng)用[J]. 西安電子科技大學學報, 2012, 39(5): 116-120. doi: 10.3969/j.issn.1001-2400.2012.05.016. WANG F W, ZHANG P F, GONG S X, et al. Radar absorbing material applied to the RCS reduction of array antennas[J]. Journal of Xidian University, 2012, 39(5): 116-120. doi: 10.3969/j.issn.1001-2400.2012.05.016. LI Y Q, ZHANG H, FU Y Q, et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 473-476. doi: 10.1109/LAWP.2008.2001548. WANG F W, GUO L X, and GONG S X. Left-handed material superstrate applied to the RCS reduction of microstrip antenna[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(11): 1428-1439. doi: 10.1080/09205071. 2016.1202784. YAN S and VANDENBOSOH G A E. Radiation pattern- reconfigurable wearable antenna based on metamaterial structure[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1715-1718. doi: 10.1109/LAWP.2016. 2528299. SIM C Y D, LIAO Y J, and LIN H L. Polarization reconfigurable eccentric annular ring slot antenna design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4152-4155. doi: 10.1109/TAP.2015.2443173. YANG W H, CHE W Q, JIN H Y, et al. A polarization- reconfigurable dipole antenna using polarization rotation AMC structure[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5305-5315. doi: 10.1109/TAP.2015. 2490250. MIAS C. Varactor-tunable drequency selective surface with resistive lumped element biasing grids[J]. IEEE Microwave and Wireless Components Letters, 2005, 5(9): 570-572. doi: 10.1109/LMWC.2005.855372. MUNK B A. Frequency Selective Surfaces: Theory and Design[M]. New York, Wiley, 2000, Section II. WANG W T, GONG, S X, WANG X, et al. RCS reduction of array antenna by using bandstop FSS reflector[J]. Journal of Electromagnetic Waves and Applications, 2009, 23(11): 1505-1514. doi: 10.1163/156939309789476473. HOSSEINI A, CAPOLINO F, and FLAVIIS F D. Gain enhancement of a v-band antenna using a fabry-prot cavity with a self-sustained all-metal cap with FSS[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(3): 909-921. doi: 10.1109/TAP.2014.2386358. -
計量
- 文章訪問數(shù): 1177
- HTML全文瀏覽量: 203
- PDF下載量: 209
- 被引次數(shù): 0