使用改進(jìn)K-SVD的網(wǎng)絡(luò)多媒體業(yè)務(wù)QoS類識(shí)別
doi: 10.11999/JEIT170133
國家自然科學(xué)基金(61401004, 61271233, 61471203), 2016年安徽省高校領(lǐng)軍人才引進(jìn)與培育計(jì)劃項(xiàng)目(gxfxZD2016013),安徽師范大學(xué)博士科研啟動(dòng)基金(2016XJJ129)
Network Multimedia QoS Class Recognition Based on Improved K-SVD
-
(College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China)
The National Natural Science Foundation of China (61401004, 61271233, 61471203), The Plan of Introduction and Cultivation of University Leading Talents in Anhui (gxfxZD2016013), The Startup Project of Anhui Normal University Doctor Scientific Research (2016XJJ129)
-
摘要: 該文基于網(wǎng)絡(luò)多媒體業(yè)務(wù)QoS(Quality of Service)特征特點(diǎn),提出網(wǎng)絡(luò)業(yè)務(wù)QoS類識(shí)別算法。探索了新的多媒體業(yè)務(wù)QoS類劃分模式,在QoS分類的基礎(chǔ)上,可以通過將具有相同或相似QoS需求特征的業(yè)務(wù)流聚集生成聚集流。聚集流劃分使用較少的QoS特征,借助聚集流可以在合理的粒度上區(qū)分多媒體業(yè)務(wù)。該文從QoS特征出發(fā)分析了聚集流識(shí)別的特點(diǎn),利用網(wǎng)絡(luò)多媒體業(yè)務(wù)典型QoS特征的稀疏性,使用改進(jìn)K-SVD(Kernel Singular Value Decomposition)進(jìn)行字典學(xué)習(xí),實(shí)現(xiàn)網(wǎng)絡(luò)多媒體業(yè)務(wù)QoS類識(shí)別。實(shí)驗(yàn)結(jié)果表明,該文算法比現(xiàn)有方法具有更高的QoS類識(shí)別準(zhǔn)確性。
-
關(guān)鍵詞:
- 異構(gòu)網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)多媒體 /
- QoS /
- 稀疏表示 /
- 業(yè)務(wù)流識(shí)別 /
- 字典訓(xùn)練
Abstract: According to QoS characteristics of network multimedia service, this paper proposes a algorithm of network multimedia QoS class recognition. This paper studies new multimedia traffic QoS class division mode. According to new QoS classes defined, Flow Aggregation (FA) can be formed by gathering multimedia traffic flows with similar QoS characteristics. Network multimedia QoS class recognition prefers fewer QoS features by FA, and it is possible to divide network multimedia traffics in suitable granularity based on FA. This paper analyzes the property of FA recognition from QoS perspective, uses improved K-SVD (Kernel Singular Value Decomposition) to learn dictionary by using the sparse representation of typical QoS characteristics of network multimedia traffics, and presents a network multimedia QoS class recognition method. Experiment results show that the proposed recognition method can achieve more accurate QoS class recognition than previous methods. -
王再見, 董育寧, 張暉, 等. 一種異構(gòu)網(wǎng)絡(luò)多媒體業(yè)務(wù)QoS類彈性映射方法[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 709-714. doi: 10.3724/SP.J.1146.2012.00890. WANG Zaijian, DONG Yuning, ZHANG Hui, et al. An elastic QoS class mapping method for multimedia traffic in heterogeneous wireless networks[J]. Journal of Electronics Information Technology, 2013, 35(3): 709-714. doi: 10.3724/ SP.J.1146.2012.00890. 王再見, 董育寧, 張暉, 等. 一種基于改進(jìn)隱馬爾可夫的多媒體業(yè)務(wù)分類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 499-503. doi: 10.11999/JEIT140340. WANG Zaijian, DONG Yuning, ZHANG Hui, et al. A multimedia traffic classification method based on improved hidden Markov model[J]. Journal of Electronics Information Technology, 2015, 37(2): 499-503. doi: 10.11999 /JEIT140340. 董育寧, 王再見, 房曙光, 等. 多媒體通信業(yè)務(wù)流識(shí)別與分類方法綜述[J]. 南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 33(3): 35-44. DONG Yuning, WANG Zaijian, FANG Shuguang, et al. Survey of methods for traffic identification and classification in multimedia communications[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2013, 33(3): 35-44. WANG Zaijian, DONG Yuning, and WANG Xinheng. A dynamic service class mapping scheme for different QoS domains using flow aggregation[J]. IEEE Systems Journal, 2015, 9(4): 1299-1310. doi: 10.1109/JSYST.2014.2351825. WANG Zaijian, DONG Yuning, SHI Haixian, et al. Internet video traffic classification using QoS features[C]. 2016 the International Workshop on Computing, Networking and Communications (CNC), Hawaii, USA, 2016: 1-6. doi: 10.1109/ICCNC.2016.7440599. MUHAMMAD M, GIAMBENE G, and COLA T. QoS Support in SGD-based high throughput satellite networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 847-849. doi: 10.1109/TWC.2016.2615618. KAZEMI R, BOLOURSAZ M, SEYED M E, et al. Capacity bounds and detection schemes for data over voice[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 8964-8977. doi: 10.1109/TVT.2016.2519926. PRASETYA S, RAHMAT B, and SUSANTO E. Quality of service improvement with 802.11e EDCA scheme using enhanced adaptive contention window algorithm[C]. 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), Bandung, Indonesia, 2015: 80-85. doi: 10.1109/COMNETSAT.2015.7434292. FENG Kaiten, SU Wunci, and CHEN Chunyu. Comprehensive performance analysis and sleep window determination for IEEE 802.16 broadband wireless networks [J]. IEEE Transactions on Mobile Computing, 2016, 15(1): 74-91. doi: 10.1109/TMC.2015.2409881. SUZNJEVIC M and MATIJASEVIC M. Trends in evolution of the network traffic of massively multiplayer online role-playing games[C]. 2015 13th International Conference on Telecommunications (ConTEL), Pirsa, Australia, 2015: 1-8. doi: 10.1109/ConTEL.2015.7231199. MARKOVICH N and KRIEGER U. Statistical analysis and modeling of peer-to-peer multimedia traffic[J]. LNCS, 2011, 5233: 70-97. doi: https://doi.org/10.1007/978-3-642-02742- 0_4. LIU Feng and LI Zhitang. A measurement and modeling study of P2P IPTV applications[C]. 2008 International Conference on Computational Intelligence and Security, CIS,08, Suzhou, China, 2008: 114-119. doi: 10.1109/CIS.2008. 112. FARAHBAKHSH R, CRESPI N, CUEVAS, et al. Understanding the evolution of multimedia content in the internet through bittorrent glasses[J]. IEEE Network, 2013, 27(6): 80-88. doi: 10.1109/MNET.2013.6678931. ZHANG Jun, CHEN Chao, XIANG Yang, et al. Internet traffic classification by aggregating correlated Naive Bayes predictions[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(1): 5-15. doi: 10.1109/TIFS.2012. 2223675. MAHESHWARI S, MAHAPATRA S, KUMAR C, et al. A joint parametric prediction model for wireless internet traffic using Hidden Markov Model[J]. Wireless Networks, 2013, 19(6): 1171-1185. doi: 10.1007/s11276-012- 0525-1. JING Ning, YANG Ming, CHENG Shaoyin, et al. An efficient SVM-based method for multi-class network traffic classification[C]. 2011 IEEE 30th International Performance Computing and Communications Conference (IPCCC), Orland, Florida, USA, 2011: 1-8. doi: 10.1109/PCCC.2011. 6108074. FINSTERBUSCH M, RICHTER C, ROCHA E, et al. A survey of payload-based traffic classification approaches[J]. IEEE Communications Surveys Tutorials, 2014, 16(2): 1135-1156. doi: 10.1109/SURV.2013.100613.00161. LI Qun, ZHANG Honggang, GUO Jun, et al. Reference-based scheme combined with K-SVD for scene image categorization [J]. IEEE Signal Processing Letters, 2013, 20(1): 67-70. doi: 10.1109/LSP.2012.2228852. GOLD S. Hacking on the hoof[J]. Engineering and Technology, 2012, 7(3): 80-83. doi: 10.1049/et.2012.0313. XU Yanbo, SIOHAN O, SIMCHA D, et al. Exemplar-based large vocabulary speech recognition using k-nearest neighbors[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, 2015: 5167-5171. doi: 10.1109/ICASSP.2015.7178956. ZHANG Jun, CHEN Chao, XIANG Yang, et al. Classification of correlated Internet traffic flows[C]. 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Liverpool, England, UK, 2012: 490-496. doi: 10.1109/TrustCom.2012. 105. -
計(jì)量
- 文章訪問數(shù): 866
- HTML全文瀏覽量: 112
- PDF下載量: 191
- 被引次數(shù): 0