An InSAR Phase Unwrapping Method Based on Incremental Sampling
Funds:
The National Natural Science Foundation of China (61471020)
-
摘要: 干涉合成孔徑雷達(dá)測量地形高程時(shí),復(fù)雜地形區(qū)域的干涉條紋過密會導(dǎo)致干涉相位解纏失敗,從而使得無法精確獲得地形高程信息。該文提出一種降低錯誤解纏率的新方法,通過對干涉復(fù)圖像進(jìn)行增采樣,使得干涉條紋相位梯度降低,從而降低相位濾波和相位解纏處理的難度,降低相位解纏的錯誤率。利用干涉復(fù)圖像頻率與Nyquist頻率之間的關(guān)系,進(jìn)行所提方法對地形的適應(yīng)性分析。理論分析和仿真結(jié)果驗(yàn)證了所提方法的有效性,尤其是對于符合Nyquist采樣的大坡度區(qū)域,該方法有很好的濾波和解纏效果。該文提出的方法不需要增加額外數(shù)據(jù),實(shí)現(xiàn)簡單,運(yùn)算速度快,可應(yīng)用于干涉合成孔徑雷達(dá)的地面處理系統(tǒng)中。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 干涉 /
- 相位解纏 /
- 增采樣 /
- Nyquist頻率
Abstract: When interferometric SAR is used to measure the terrain elevation, the dense interference fringes in the complex terrain will lead to phase unwrapping failure, so that the terrain elevation information can not be obtained accurately. In this paper, a new method to reduce the error rate of phase unwrapping is proposed. The interference fringe gradient is decreased by increasing the size of the interference complex image, and the difficulties of phase filtering and phase unwrapping is reduced. Based on the relationship between the complex image frequency and the Nyquist frequency, the adaptability of the proposed method to the terrain is analyzed. The effectiveness of the proposed method is verified by theoretical analysis and simulation. Especially for the large gradient region conforming Nyquist sampling, this method has good filtering and unwrapping effect. The method proposed does not need extra data, is simple to implement and fast in operation, and can be applied to the ground processing system of interferometric SAR.-
Key words:
- SAR /
- Interference /
- Phase unwrapping /
- Incremental sampling /
- Nyquist frequency
-
LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics Information Technology, 2016, 38(1): 229-240. doi: 10.11999/JEIT151116. 李春升, 王偉杰, 王鵬波, 等. 星載SAR技術(shù)的現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 229-240. doi: 10.11999/ JEIT151116. CHAUBEY Nidhi, UPADHYAY Swati, JOSHI Ashish, et al. Improvement in InSAR phase unwrapping using external DEM[C]. 5th IEEE International Conference on Communication and Signal Processing, Melmaruvathur, India, 2016: 78-82. HUANG Qian, ZHOU Huiqun, DONG Shaochun, et al. Parallel branch-cut algorithm based on simulated annealing for large-scale phase unwrapping[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(7): 3833-3846. doi: 10.1109/TGRS.2014.2385482. 王霖郁, 李輝. 一種枝切法和質(zhì)量圖相結(jié)合的InSAR相位解纏算法[J]. 應(yīng)用科技, 2016, 43(5): 49-53. doi: 10.11991/ yykj.201512027. WANG Linyu and LI Hui. An algorithm based on the branch-cut and quality map for InSAR phase unwrapping[J]. Applied Science and Technology, 2016, 43(5): 49-53. doi: 10.11991/yykj.201512027. LIU Weike and LIU Goulin. A new method of weight choice in InSAR least squares unwrapping[J]. Geodesy and Geodynamics, 2012, 4(1): 39-43. doi: 10.3724/SP.J.1246.2012. 00039. 劉會濤, 邢孟道, 保錚. 利用L+L1范數(shù)的多基線相位解纏繞方法[J]. 電子與信息學(xué)報(bào), 2015, 37(5): 1111-1115. doi: 10.11999/JEIT140955. LIU Huitao, XING Mengdao, and BAO Zheng.L+L1- norm method for Multi-baseline phase unwrapping[J]. Journal of Electronics Information Technology, 2015, 37(5): 1111-1115. doi: 10.11999/JEIT140955. ZHANG Kui, GE Linlin, HU Zhe, et al. Phase unwrapping for very large interferometric data sets[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(10): 4048-4061. doi: 10.1109/TGRS.2011.2130530. LIN Chunyan, CHEN Liang, and GE Shiqi. Research on method of flat earth effect removal based on refined local fringe frequency[C]. International Radar Conference, Adelaide, South Australia, 2013: 1-6. JEUGHT S V D, SIJBERS J, and DIRCKX J J J. Fast Fourier-Based phase unwrapping on the graphics processing unit in Real-Time imaging applications[J]. Journal of Imaging, 2015, 1(1): 31-44. doi: 10.3390/jimaging1010031. DAI Zhiyang and ZHA Xianjie. An accurate phase unwrapping algorithm based on reliability sorting and residue mask[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(2): 219-223. doi: 10.1109/LGRS.2011.2165198. GATELLI F, MONTI Guamieri A, PARIZZI F, et al. The wavenumber shift in SAR interferometry[J]. IEEE Transactions on Geoscience Remote Sensing, 1994, 29(4): 855-865. doi: 10.1109/36.298013. XU Huaping, CHEN Jie, ZHOU Yinqing, et al. A new concept: Critical number of looks for multilook processing method for InSAR noise suppression[C]. International Conference on Space information Technology, International Society for Optics and Photonics, Wuhan, 2005: 598522-598522-5. 孫龍, 張長耀, 胡茂林. 星載InSAR空間基線的系統(tǒng)設(shè)計(jì)與性能分析[J]. 雷達(dá)科學(xué)與技術(shù), 2007, 5(2): 133-138. doi: 10.3969/j.issn.1672-2337.2007.02.012. SUN Long, ZHANG Changyao, and HU Maolin. System design and performance analysis of spatial baseline in spaceborne InSAR[J]. Radar Science Technology, 2007, 5(2): 133-138. doi: 10.3969/j.issn.1672-2337.2007.02.012. PFANDER G E and WALNUT D F. Sampling and reconstruction of operators[J]. IEEE Transactions on Information Theory, 2015, 62(1): 435-458. doi: 10.1109/TIT. 2015.2501646. SHI Xiaojin, ZHANG Yunhua, and JIANG Jingshan. InSAR image registration using modified correlation coefficient algorithm[C]. International Symposium on Antennas, Propagation and Em Theory, Guilin, 2006: 1-4. 朱岱寅, 朱兆達(dá), 謝求成. 一種基于局部頻率估計(jì)的地形自適應(yīng)干涉圖濾波器[J]. 電子學(xué)報(bào), 2002, 30(12): 1853-1856. doi: 10.3321/j.issn:0372-2112.2002.12.031. ZHU Daiyin, ZHU Zhaoda, and XIE Qiucheng. Topography adaptive interferogram filter based on local frequency estimation[J]. Acta Electronica Sinica, 2002, 30(12): 1853-1856. doi: 10.3321/j.issn:0372-2112.2002.12.031. DUDCZYK J and KAWALEC A. Optimizing the minimum cost flow algorithm for the phase unwrapping process in SAR radar[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2014, 62(3): 511-516. doi: 10.2478/ bpasts-2014- 0055. 楊小琪, 姜衛(wèi)東, 霍凱. 基于OFDM信號的無源雷達(dá)干擾抑制方法[J]. 雷達(dá)科學(xué)與技術(shù), 2016, 14(4): 364-370. doi: 10.3969/j.issn.1672-2337.2016.04.004. YANG Xiaoqi, JIANG Weidong, and HUO Kai. Suppression method of passive radar based on OFDM signal[J]. Radar Science and Technology, 2016, 14(4): 364-370. doi: 10.3969 /j.issn.1672-2337.2016.04.004. -
計(jì)量
- 文章訪問數(shù): 1360
- HTML全文瀏覽量: 154
- PDF下載量: 277
- 被引次數(shù): 0