認(rèn)知無(wú)線電頻譜感知估計(jì)時(shí)延的隨機(jī)規(guī)劃優(yōu)化算法
doi: 10.11999/JEIT170122
浙江省科技計(jì)劃公益技術(shù)應(yīng)用研究項(xiàng)目(2017C31055),電子科學(xué)與技術(shù)浙江省一流學(xué)科A類(lèi)資助
Stochastic Approach Optimization Algorithm for Cognitive Radio Spectrum Sensing Estimation Delay Time
Zhejiang Province Science and Technology Plan Public Welfare Technology Application Research Project (2017C31055), 2017 Open Research Foundation of Electronics Science and Technology for Top-ranking Discipline A Class in Zhejiang Province
-
摘要: 為了提高認(rèn)知無(wú)線電網(wǎng)絡(luò)的頻譜利用率,該文提出對(duì)認(rèn)知無(wú)線網(wǎng)絡(luò)頻譜感知估計(jì)時(shí)間進(jìn)行優(yōu)化。如果頻譜感知時(shí)間較長(zhǎng),一方面對(duì)信道參數(shù)的估計(jì)更準(zhǔn)確,會(huì)減小對(duì)授權(quán)用戶的干擾并提高認(rèn)知用戶的吞吐量;另一方面,數(shù)據(jù)傳輸時(shí)間相應(yīng)縮短,使系統(tǒng)吞吐量減小,這時(shí)存在一個(gè)最優(yōu)的感知時(shí)間使得系統(tǒng)吞吐量最大。該文認(rèn)為子頻段的信道狀態(tài)信息服從指數(shù)分布,故提出隨機(jī)規(guī)劃的方法,對(duì)認(rèn)知無(wú)線網(wǎng)絡(luò)頻譜感知估計(jì)時(shí)間進(jìn)行優(yōu)化運(yùn)算。計(jì)算機(jī)仿真結(jié)果表明,該算法是切實(shí)有效的,具有一定的工程應(yīng)用價(jià)值。
-
關(guān)鍵詞:
- 認(rèn)知無(wú)線網(wǎng)絡(luò) /
- 頻譜感知 /
- 隨機(jī)規(guī)劃
Abstract: In order to improve the spectrum efficiency in the cognitive radio networks, the optimization algorithm of the spectrum sensing estimation time is presented. The longer sensing time will bring two aspects of the consequences. On the one hand, the channel parameters are estimated more accurate so as to reduce the interference to the authorized users and to improve the throughput of the cognitive users. On the other hand, it shortens the transmission time so as to decease the system throughput. In this time, it exists an optimal sensing time to maximize the throughput. It is considered that the channel state information of sub-bands is exponentially distributed, so a stochastic programming method is proposed to optimize the sensing time of the cognitive radio networks. The computer simulation results show that the algorithm is effective and has a certain engineering application value.-
Key words:
- Cognitive radio networks /
- Spectrum sensing /
- Stochastic approach
-
MITOLA J and MAGUIRE G Q J. Cognitive radio: Making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210. ASTAIZA E, JOJOA P, and BERMUDEZ H. Compressive local wideband spectrum sensing algorithm for multiantenna cognitive radios[C]. 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellin, Colombia, 2016: 1-6. doi: 10.1109/LATINCOM.2016. 7811577. FEBRIANTO T and SHIKH-BAHAEI M. Optimal full- duplex cooperative spectrum sensing in asynchronous cognitive networks[C]. 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 2016: 1-6. doi: 10.1109/APWiMob.2016.7811446. OZCAN G, GURSOY M C, TRAN N, et al. Energy-efficient power allocation in cognitive radio systems with imperfect spectrum sensing[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3466-3481. doi: 10.1109/ JSAC.2016.2621399. GIWELI Nabil, SHAHRESTANI Seyed, and CHEUNG Hon. QoS-aware spectrum sensing in White-Fi cognitive radio networks[C]. 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS), Surfers Paradise, Gold Coaat, Australia, 2016: 1-8. doi: 10.1109/ ICSPCS.2016.7843376. WANG Xinyu, JIA Min, GUO Qing et al. Reputation-based cooperative spectrum sensing algorithm for mobile cognitive radio networks[J]. China Communications, 2017, 14(1): 124-134. doi: 10.1109/CC.2017.7839763. 黨小宇, 李阿明, 虞湘賓. 基于空間譜的頻譜感知算法及性能分析[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1179-1185. doi: 10.11999/JEIT150823. DANG Xiaoyu, LI Aming, and YU Xiangbin. Spatial spectrum based spectrum sensing algorithm and performance analysis[J]. Journal of Electronics Information Technology, 2016, 38(5): 1179-1185. doi: 10.11999/JEIT150823. WANG Yifan and LI Husheng. Universal quickest spectrum sensing[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 2016: 1-6. doi: 10.1109/GLOCOM.2016.7842360. SHAIKH Bushra, SHAH S M Z, and UMRANI F. An unsigned autocorrelation based blind spectrum sensing approach for cognitive radio[C]. 2016 International Conference on Open Source Systems Technologies (ICOSST), Lahore, Pakistan, 2016: 48-53. doi: 10.1109/ ICOSST.2016.7838576. 劉玉磊, 梁俊, 肖楠, 等. 基于馬爾科夫模型的認(rèn)知無(wú)線電動(dòng)態(tài)雙門(mén)限能量檢測(cè)策略[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2590-2597. doi: 10.11999/JEIT151400. LIU Yulei, LIANG Jun, XIAO Nan et al. Dynamic double threshold energy detection based on markov model in cognitive radio[J]. Journal of Electronics Information Technology, 2016, 38(10): 2590-2597. doi: 10.11999/JEIT 151400. JIANG Xianyang, SHEN Lei, XU Xiaorong et al. Power allocation optimisation for high throughput with mixed spectrum access based on interference evaluation strategy in cognitive relay networks[J]. IET Communications, 2016, 10(12): 1428-1435. doi: 10.1049/iet-com.2015.0849. LIU X. A new sensing-throughput tradeoff scheme in cooperative multiband cognitive radio network[J]. International Journal of Network Management, 2014, 24(3): 200-217. doi: 10.1002/nem.1859. 曹龍, 趙杭生, 鮑麗娜, 等. 分層認(rèn)知無(wú)線電網(wǎng)絡(luò)中基于穩(wěn)定匹配的資源分配算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460. CAO Long, ZHAO Hangsheng, BAO Lina et al. Resource allocation algorithm based on stable matching in hierarchical cognitive radio networks[J]. Journal of Electronics Information Technology, 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460. ABDI Y and RISTANIEMI T. Random interruptions in cooperation for spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Communications, 2017, 65(1): 49-65. doi: 10.1109/TCOMM.2016.2620465. ALMALFOUH S M and STUBER G L. Joint spectrum- sensing design and power control in cognitive radio networks: A stochastic approach[J]. IEEE Transactions on Wireless Communications, 2012, 11(12): 4372-4380. doi: 10.1109/ TWC.2012.100112.111894. -
計(jì)量
- 文章訪問(wèn)數(shù): 1471
- HTML全文瀏覽量: 196
- PDF下載量: 270
- 被引次數(shù): 0